n w University of Applied Sciences and Arts Northwestern Switzerland
School of Engineering

Hasan Selman Kara & Patrick Burkhalter

Data Wrangling Using
Programming by Example

Extending String Manipulation with
Known-Entity-Translations

Bachelor’s Thesis

School of Engineering
University of Applied Sciences and Arts Northwestern Switzerland (FHNW) Brugg-Windisch

Supervision

Simon Felix

Customer

Shouldcosting GmbH

March 2019

Abstract

Millions of people need to analyze raw data of varying quality to support their job function. In a lot
of cases the present data needs to be refined and processed from its raw form to a more structured
format in order to analyze and visualize it. This process is time-intensive and error-prone. Usually
tools like Microsoft Excel or OpenRefine are used to improve that process. However, any non-
trivial data wrangling task remains inaccessible to non-programmers. Furthermore, existing tools
only cover the most common use cases, i.e. they are business agnostic.

Programming by example (PBE), a subfield of program synthesis, allows for a natural and intuitive
user interaction mechanism. Users can specify their intent by providing input output examples for
string transformations.

Using PBE for data wrangling is not a novel idea. Flash Fill is a PBE feature in Excel and
Microsoft’s PROSE framework shows the potential of PBE for data wrangling. However, these
existing solutions cannot be integrated into custom software.

Therefore, we developed a custom PBE system for data wrangling tasks. We describe a custom
domain-specific language (DSL) for complex string manipulations. We present a data structure
to represent a large number of programs built in our DSL. We introduce a custom synthesis
algorithm that populates our data structure with programs to transform string inputs to their
intended outputs.

Our PBE system outperforms the baseline in every test set. The state of art system PROSE per-
forms better than our system in one case only. With our PBE system the user only needs to
provide 1.06% (baseline 2.98% and PROSE 1.24%) of the outputs, all other outputs are indepen-
dently processed by the system. Furthermore, our synthesis algorithm converges rapidly and takes
a fraction of a second to synthesize programs. Additionally, by extending the general string ma-
nipulation PBE system with known-entity-translations we showcase how extensible the system is
for business-specific requirements. The synthesizer has been integrated and deployed to an existing
custom data wrangling tool of our customer. This report serves as a guide for others to determine
the feasibility of developing a custom PBE system.

Keywords: Program Synthesis, Programming by Example, Data Wrangling.

Contents

Nomenclature
1 Introduction
1.1 Objective
1.2 Context
1.3 Interaction Model
1.4 State of Research
1.4.1 Synthesis of Programs in Many Domains
1.4.2 User Intent Specification
1.4.3 Program Space
1.4.4 Search Technique
2 Problem Definition
2.1 Data Analysis
2.2 Examples
3 Programming by Example
3.1 Domain-Specific Language
3.2 Data Structure
4 Synthesis Algorithm
4.1 Building Possible Programs
4.2 Intersecting Programs
4.3 Finding and Ranking Programs
4.4 Conditional Application

5 Results and Discussion
5.1 Metrics
52 Results.
6 Conclusion
6.1 Contribution
6.2 Outlook
Bibliography

4.5 Synthesizer
4.6 Optimization

ii

OO TR NN <

©

12
13
17

19
19
21
24
24
26
27

29
29
31

36
36
36

38

List of Figures

1.1

1.2
1.3

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2

4.3
4.4
4.5

5.1
5.2
5.3
5.4

The analysis page of the first version of the DIC web application. Here the user can
perform various actions on the displayed data set such as “Reduce Text Variance”
or “Prewash”™ L
New PBE pop-up shows the interaction model
Solving a simple equation with Z3 SMT solver in python [1]

Percentage of duplicate records in test set.
Distribution of non-alphanumeric characters in test sets.

Overview of how our PBE system works.
An output string can be assembled in numerous ways from its input string. .
Visualize how ([Pos({", 4,8}, {A},1)]] “Peter Smith”) evaluates to index ¢.
Directed acyclic graph with a sample of edges where each edge represents a substring
of the output string. L

Two graphs before intersection. Source and target nodes are bold.
Full graph after building the Cartesian product of two graphs and intersecting the
edges. The nodes are arranged in a matrix where one graph represents the rows and
the other the columns.
Graph with border nodes and empty edges removed
End result of the intersection of two DAGs.
Distribution of the length of token sequences

Benchmark results of the PBE system and the reference algorithm.
Histogram of synthesis time, N =584
Synthesis time per test set
Benchmark results of our PBE system and the Microsoft PROSE.

iii

w

12
13
16

17

21

List of Tables

2.1
2.2
2.3

4.1

5.1

Multiple input output examples requiring some sort of string extraction.
Multiple input output examples requiring some sort of string manipulation.
Multiple input output examples requiring some sort of lookup.

Score without (with) distinction of characters and numbers left (right)

Depending on the order of input output pairs the generated programs are different.

iv

10
11
11

28

30

Nomenclature

Acronyms and Abbreviations

CNF
CSP
DIC
DSL
ERP
PBE
PROSE
PSI
SAT
SMT
SVM
SyGuS

Conjunctive Normal Form
Constraint Satisfaction Problem
Data Integrity Checker
Domain-Specific Language
Enterprise Resource Planning
Programming by Example
Program Synthesis using Examples
Predictive Saving Identifier
Boolean Satisfiability Problem
Satisfiability Modulo Theories
Symbolic Virtual Machine
Syntax-Guided Synthesis

SyGuS-Comp SyGuS Competition

SyGuS-IF

SyGuS Input Format

Chapter 1

Introduction

Millions of people need to analyze data in various forms to support their job function. In a lot of
cases the data present needs to be refined and processed from its raw format to a more structured
format in order to analyze and visualize it. We refer to that process as data wrangling.

Data wrangling is a time-intensive task. Today, people use software such as Microsoft Excel or
OpenRefine to help with this process. These tools offer a lot of power and flexibility, but they have
some downsides.

Firstly, they have an accessibility problem for non-programmers. A supposedly simple task such as
extracting the string “300CHF” from an input “W42-300CHF-Joe” is non-trivial. One possible
Excel formula would look like the following;:

=MID(A2, SEARCH("-",A2) + 1, SEARCH("-",A2,SEARCH("-",A2)+1) - SEARCH J
("—",AQ) - 1)

Writing such a program would be challenging for a programmer inexperienced in the Excel pro-
gramming model — let alone for an analyst without a programming background. These users do
not want to become developers, they just want to have their data in an appropriate format to suit
their needs.

Secondly, existing tools are business agnostic, as they were developed to cover the most common
use cases. Excel does not know anything about the business field the user is working in. This means
for example that Excel cannot easily translate known entities such as different industry norms, e.g.
transform a DIN value to ISO.

PBE systems (Programming by Example) can help to make data wrangling a less dreadful expe-
rience by being business aware and accessible to any user. PBE is a subfield of program synthesis,
where the specification comes in the form of input output examples [2]. Given certain specification
— in our case string input output examples — a program synthesizer deduces the desired intent and
synthesizes a program that satisfies the specification. The synthesized program can then be applied
on other inputs. Programming by example allows a user to create programs without programming
conventionally [3].

In this report we present a custom-built PBE system for data wrangling. We showcase the reasons
to develop a custom PBE system and how our system can be extended to new business needs.

1.1 Objective

One objective of our work is to make programming more accessible to non-programmers — namely
data analysts at Shouldcosting GmbH. An approach to achieve this “democratization of program-

1

Chapter 1. Introduction 2

ming” is by building systems that allow for natural and intuitive interaction mechanisms for users
to specify their intended tasks so that even non-programmers can perform programming tasks [4].

There are already projects based on PBE in the domain of data wrangling and string manipulation.
These and other program synthesis projects are discussed in Section 1.4.1. Special mention deserves
the work by Sumit Gulwani and the PROSE (Program Synthesis using Examples SDK) research
team at Microsoft — which is lead by Gulwani. Microsoft PROSE SDK is a general purpose
program synthesis framework for automatic programming or data wrangling from input output
examples. Gulwani’s PBE work led to the Flash Fill feature of Microsoft Excel, which is the
inspiration behind this project.

Sadly, Microsoft’s PROSE SDK is not commercially available!. Furthermore, integrating Flash Fill
— which runs inside Excel — with our customer’s current product (see Section 1.2) is not feasible.

Thus, we need to research and develop a new product with the following properties:
e Commercially available The product must be available for commercial use.

e Reproducible Other people facing a similar problem can use our report to create their own
PBE system.

e Extensible The system can be extended for different business needs. In our work we enhance our
general string transformation PBE system with known-entity-translations. This requirement
is a direct business need of our customer who wants to translate string values between different
material norms.

1.2 Context

Shouldcosting identifies cost-saving potential in the incoming goods department of companies.
Their customers provide them with data from different sources such as their ERP systems. Analysts
at Shouldcosting use a custom-built software called PSI (Predictive Saving Identifier) to analyze
the customer data and to find saving potentials.

Most customers come from the industrial sector. They store their data in insufficient ways, i.e.
inhomogeneous data is stored that later makes computational analysis difficult. Therefore, the data
needs to be pre-processed before feeding it into the PSI. To assist in that process Shouldcosting
commissioned the DIC (Data Integrity Checker) project at FHNW. The result is a web application
— as seen in Figure 1.1 — that helps the user visualize and decrease the variance of a given data
set.

This previous product is used in production at Shouldcosting. Our project is an extension of the
old DIC with a PBE functionality. This means we inherit the existing code base and extend it.

1.3 Interaction Model

Simply developing a program synthesizer is not enough to satisfy user needs. Considering and
choosing an appropriate interaction model is crucial for user adoption [5]. Users want to commu-
nicate their intent in a simple way and as intuitively as possible.

In this chapter we describe the interaction model used in DIC for the new PBE feature. As seen
in Figure 1.1, the DIC displays the contents of an uploaded data set (a CSV file) as a table and
allows multiple actions that can be applied on a selected column. In order to ensure seamless
integration, we simply added two more possible actions that can be performed on the data set —

1Clarified after an e-mail inquiry with Microsoft (03.10.2018)

Chapter 1. Introduction 3

DIC

History

N* of columns: @ | N* rows: @D | N° selected columns: (@) | N° selected rows: () | DIV: 59.16%

Select all Deselect all Show 200 Rows v Actions = Edit View + Q

Country Batch Annual

Id Nummer Name of item Vendor of Orgi. size quantity
»
1 10556798 Main motor 7.5 KW ABM ABM DE 40 1180
516333 GREIFFENBERGER
2 11023360 Motor 1.1KW ATB CN 8 20
MOTORS(SHANGHAI)
CO.LTD

Figure 1.1: The analysis page of the first version of the DIC web application. Here the user can
perform various actions on the displayed data set such as “Reduce Text Variance” or “Prewash”.

Add PBE and Start PBE — instead of adding a completely new page just for PBE. Thus, the new
PBE feature is integrated into DIC and can be used like all the other data manipulation operations.

The difference between Add PBE and Start PBE is that the former adds for a selected column a
new PBE column, whereas the later starts the PBE process for two selected columns — a normal
column as the input and the a PBE column as the output.

Chapter 1. Introduction 4

Q
Analyse

Programming By Example [Tota\ N° of rows: @@ | Distinct N° of rows: (@)]

INPUT

1.0038 / Baustahl

1.0038 / Nicht zugeordnet

1.0330 / Baustahl

1.4301+C / Nichtrostender Stahl

1.4310+2B / Federstahl

3.0255 / Aluminium

1.4301+28 3.1B/W2 / Nichtrostender Stahl

Figure 1.2: The new PBE pop-up shows the interaction model with the PBE system. (1) Shows
the number of rows and the number of distinct rows, as the pop-up visualizes a distinct view over
the data set because applying different programs on the same input does not make sense. (2) A
progress bar shows how long it takes until a synthesizer timeout occurs. Sometimes synthesizing a
program takes longer than acceptable for a user. Therefore, we give a visual feedback for how long
the user has to wait at most. (3) Entering an example output by hand enables the PBE button.
(4) As no output is provided, PBE cannot be started from this index.

The Start PBE action opens a pop-up (see Figure 1.2) where the user can enter a output example
for a given input. Clicking the downwards arrow starts the program synthesizer. As input, the
synthesizer takes all examples that are entered by hand and that are above the clicked arrow. The
synthesized program is applied on each input below the clicked arrow that does not already have
an output provided by the user.

The rationale behind this interaction model is that a user will start the data wrangling from the top,
provide some examples, start the synthesizer and proceed to check whether some outputs below
are wrong. If an erroneous output is found, the user can fix the output, restart the synthesizer
and repeat the process. Thus, we can safely assume that all outputs above the clicked arrow are
correct and do not have to be edited again. Therefore, we increase user trust in the system by not
performing unexpected actions.

1.4 State of Research

Program synthesis is an active research topic and is considered by some to be the Holy Grail of
computer science. Instead of telling a computer how to solve a problem, we tell a synthesizer what
we want to solve. This chapter describes the us of program synthesis, the components of program
synthesizers — user intent, program space and search technique — and their challenges.

Chapter 1. Introduction 5

1.4.1 Synthesis of Programs in Many Domains

Before we dive deeper into possible ways to achieve program synthesis, we look at the different
domains it is currently used in. In its most general formulation, every problem is amenable to
synthesis if one can give the problem an executable semantic [6]. Such problems include:

1. String manipulations [7, 8, 3]
. Data wrangling [9, 10]
. Memory model checker [11]

2
3
4. Hints for solving education problems [4]
5. Network protocols [12]

6

. Cell biology [13]

Despite all these domains being vastly different, the components used in their program synthesizer
are similar.

1.4.2 User Intent Specification

For a program synthesizer to deduce the users intent it has to be specified somehow. In this
subsection we present three different specification mechanisms. These mechanisms differ in various
aspects. Some specifications are more ambiguous than others. The ease of use, i.e. how hard it is
to provide a specification, differs for each mechanism. Another aspect is how easy a synthesized
program can be verified for correctness against the given specification.

Formal Specification Given a user-provided formal specification, an automated theorem solver
is applied to construct a proof which is used to deduce the corresponding program. Therefore,
by using a formal specification the user can specify the intent as detailed as desired and the
generated proof can be used to verify the synthesized program. However, giving a complete formal
specification is in many cases as complicated as writing the program itself [14].

Concrete Input Output Examples Input output examples provide an exact description of
what the output should look like. Given one or more such input output examples a synthesizer
deduces a pattern for similar inputs. This method is commonly used — e.g. in Flash Fill — as its
usability is great. The drawback is that it leaves the user intent under-specified as the specification
is very ambiguous. Also, the only possible solution for exact verification is to use the same input
output examples on the synthesized program to check correctness.

Multimodal input Instead of limiting specification mechanisms to a single option, we can com-
bine multiple options. Furthermore, by going beyond the traditional requirement of composing a
syntactically correct sequence of instructions in a finite set of language instructions, a new paradigm
for interactive programming using multimodal natural input is facilitated [14].

Examples for possible multimodal user inputs include examples, demonstrations, natural language,
keywords, and sketches.

Chapter 1. Introduction 6

1.4.3 Program Space

The program space defines which components can be used by the synthesizer to create a program
which fulfills the given requirements. This search space, also called hypothesis space, can either be
predefined or dynamically extensible.

A predefined program space is a domain-specific language (DSL) defined by the programmer of the
synthesis system. The developer uses the knowledge of the domain where the synthesizer is used
to find a compromise between expressiveness of the language features and the number of features.
A case where a fixed DSL is used is the Flash Fill feature in Microsoft Excel [7] which is used for
string transformation.

An example for a dynamically extensible program space is the Automated Feedback Generation
for Introductory Programming Assignments [15]. This paper describes a tool for programming
assignments at university where the instructor can define models to predict errors made by students.
These error models are used by the synthesizer to find bugs in the students code and provide a
meaningful error message, thus reducing the workload for teaching assistants.

For our program synthesizer a static DSL is used. The reason is that our customer provides us
with the domain knowledge needed for the DSL and there is no need for dynamic elements in the
program space.

1.4.4 Search Technique

“In its most general formulation (for a Turing-complete programming language and an arbitrary
constraint) program synthesis is undecidable, thus almost all successful synthesis approaches per-
form some kind of search over the program space.” [14]

This search over the program space can be conducted in a number of ways. In this subsection we
present three different search techniques.

Enumerative search The most simple approach to find valid programs is to brute force all
possible combinations of elements in the program space and to test them against the specification.
This simple approach is infeasible for almost all use cases [16].

The more sophisticated approaches use pruning strategies to control the size of the possible pro-
grams. Possible implementations of this are the different approaches to tree search like top down,
bottom up or bidirectional [14].

Furthermore, Gulwani presents a way to enumerate possible programs in a graph. This approach is
primarily constructed for string transformations. It only enumerates programs which fulfill at least
a part of the specification and represents them as edges in a graph. After the graph is populated
the paths that lead from the source to the target are valid programs [7].

Stochastic search The stochastic search approaches the problem of finding programs in the
hypothesis space with probability.

One possibility is to represent all programs as a node in a graph where each edge represents a
single change to a program which leads to the other program. A size function then is used to apply
the Metropolis-Hastings Algorithm on this graph [14]. This algorithm interprets the graph as a
Markov Chain and uses Monte Carlo sampling to estimate the best program defined by the size
function [17].

Genetic Programming can be used to iteratively make random changes to programs and continue
with the programs that have the best score in a given fitness function. Furthermore, it allows
sharing promising code fragments between different breeds of programs [16].

Chapter 1. Introduction 7

Using machine learning is another method to program synthesis. A possible approach is to define a
context-free grammar where the probability of occurrence is trained for each grammar rule. These
weighted rules are used to decide which grammar elements should be used for the program [18]. A
flaw in this search technique is that the contextual information of the input cannot be used [14].

Lastly there are two different deep learning approaches. With program induction a neural network
is trained to be used as a program directly. Alternatively a neural network can be used to produce
a program like the other synthesis algorithms [14].

Constraint Solving The search space is limited by providing constraints to the possible solution.
Finding valid solutions in the search space is a constraint satisfaction problem (CSP). CSPs are
expressed in the following form. “Given a set of variables, together with a finite set of possible
values that can be assigned to each variable, and a list of constraints, find values of the variables
that satisfy every constraint.” [19]

CSPs are usually solved with SMT-solvers (satisfiability modulo theories) instead of the low level
SAT-solvers (boolean satisfiability). “SMT-solvers are frontend to SAT-solvers, i.e. they translate
input SMT expressions into conjunctive normal form (CNF) and feed SAT solvers with it.” [1]
Figure 1.3 describes how to solve an example linear equation system with the Z3 SMT-solver.

from z3 import *

= Real(’x’)

= Real(’y’)

Real(’z’)

Solver ()

.add(3*x + 2%y - z == 1)

.add(2*x - 2%y + 4xz == -2)

.add(-x + 0.5%y - z == 0)

print s.check()

print s.model() # -> [z = -2, y = -2, ¢ = 1]

Jxr+2y—z=1
20 — 2y — 4z = =2
—z4+05y—2=0

n n n n N< X
I

Figure 1.3: Solving a simple equation with Z3 SMT solver in python [1]

Remark. A system of linear equations can hold certain constraints which might not have solution,
i.e. the problem is unsatisfiable.

Real-world applications can have thousands of constraints. In general, solving constraint satisfac-
tion problems are NP-complete (Cook-Levin theorem). Therefore, SAT solvers prune the search
space as early as possible.

Encoding a problem in SMT — let alone directly in SAT — is very time-intensive and nontrivial. In
order to make program synthesis more accessible to programmers several frameworks are available.
These frameworks allow solver-aided programming. Programmers can specify synthesis problems
in a higher-level programming language with new constructs for constraint solving. Such constructs
enable embedding second-level subproblems into regular programs in the host language [14].

ROSETTE is an example of a solver-aided programming framework [20]. Its host language is Racket
— a Lisp type programming language — which runs on a custom symbolic virtual machine (SVM).
Programmers can define custom solver-aided domain-specific languages (SDSLs) which frees the
developer from compiling their language into SAT/SMT constraints [21].

We considered using Rosette for our work. However, we chose not to follow this approach. One
of our project objectives is to make program synthesis more accessible to other programmers, so
that they can extend our solution. Solutions based on SAT/SMT remain mostly too difficult for

Chapter 1. Introduction 8

people not well versed in program synthesis — despite the best efforts in the space of solver-aided
programming by Torlak et al.

Chapter 2

Problem Definition

Our main goal is to create a PBE system that performs best for the data used by Shouldcosting,
not a general purpose PBE system. Shouldcosting provided us with a set of already processed data,
which we use to build and measure the algorithm.

2.1 Data Analysis

In this section we will conduct a data analysis of the provided data set. The first aspect to consider
is the variance. This strongly impacts the number of examples needed, as duplicate input output
examples only need to be processed once. As seen in Figure 2.1 some of the inputs have no
duplication at all and others have up to 99.5% duplication.

100%-

80%-

60%

40%

% of duplicate entries

20%

0%
BERN_A BERN_B BOSS_A BOSS_B Lookup

0% -

Figure 2.1: Percentage of duplicate records in test set.

Furthermore, we need to analyze the special characters used in the test sets. This is used to decide
which special character the PBE system needs to be able to process. Therefore, we checked the
data set provided by the customer and plotted the frequency of characters, shown in Figure 2.2.
The chart does not include the test set “BOSS B”, as it contains only alphanumeric characters.

9

Chapter 2. Problem Definition 10

10000 A

H KHS
B Look
9000 TOO h
B Tee
8000 1] ECTH B
oly
7000 A Bern A
I Boss A
6000 A
g
& 5000 1
4000 A
3000 A
2000 A
1000 A

0 -

Non alpha numberic chars

Figure 2.2: Distribution of non-alphanumeric characters in test sets.

Remark. Additionally we added a Lookup file which provides test cases for the known-entity-
translation. This is necessary because these use cases are not contained in the provided data set.
The basis of this Lookup file is an existing test file where we translated the material norms.

2.2 Examples

In this section we describe some concrete input output examples selected from the real-world data
set provided by the customer. These examples illustrate what concrete use cases our PBE system
must be able to handle. Furthermore, we see how heterogeneous the test set is.

Example 1. Most input output examples require some sort of string extraction, i.e. the intended
output is constructed of one or more substrings from the input. Table 2.1 lists some string extraction
examples.

’ Input \ Output
1.0038 / Nicht zugeordnet 1.0038
1.4301+2B 3.1B/W2 1.4301
DCO01+ZE (1.0330+ZE) / Stahl 1.0330
X8CRNIS18-9+C W-NR.1.4305 1.4305
GGG-60 W-NR.0.7060 0.7060
EN AW-2007 T4 [ALCU4PBMGMN] EN AW-2007 T4
X 10 CrNi 18-8 (Rm 1100-1250) / SUS 301 (1.4310) | 1.4310
1010325.B.00 1010325
0370745.B.00 370745
0016415.0.01 16415

Table 2.1: Multiple input output examples requiring some sort of string extraction.

Chapter 2. Problem Definition 11

Example 2. In some cases extracting substrings from input is not sufficient to construct the
output because the input lacks certain characters used in the intended output. Common use cases
for this requirement are for example adding punctuation or changing the capitalization. Table 2.2
lists the few string manipulation examples in our data set.

] Input \ Output ‘

St37K St37k
5235JR | St235k

Table 2.2: Multiple input output examples requiring some sort of string manipulation.

Example 3. One of the most desired requirements of our customer is the translation of known
entities. Data in norm A must be converted into norm B. This could mean that none of the
input is used to construct the output. Rather, the input is used a lookup key for its corresponding
output. Therefore, this use case differs heavily from Example 2. As seen in Table 2.3, the output
is completely different from the input.

’ Input \ Output ‘

| EN AW-5754 / Aluminium | 3.3535
| 1.4301+2B 3.1B/W2 / Nichtrostender Stahl | X5CrNil8-10 |

Table 2.3: Multiple input output examples requiring some sort of lookup.

Example 4. One program might not work on all inputs as intended as different kind of inputs
might need completely different programs. However, there can be inhomogeneous data in the same
data column. Consider the following list where the user intends to extract the bold substring from
the respective strings.

1. 1.0036 / Baustahl
2. 1.0038 / Nicht zugeordnet
3. 1.4301 X5...810 / Nicht zugeordnet

31. DCO1+ZE (1.0330+ZE) / Stahl

5032. DCO1+ZE (1.0331+ZE) / Stahl

If the first synthesized program extracts the first six characters, the result will obviously not work
for all inputs. Thus, the synthesizer must be able to apply a different program depending on the
input.

Chapter 3
Programming by Example

In this chapter, we describe the language L that can model different string operations and what
approach we use to handle strings. We present a data structure to succinctly represent a large set
of expressions in the language. With the language and the data structure we are able to represent
all possible programs for one input output example.

Figure 3.1 shows the high-level overview of our PBE system and how the different components
interact with each other and the user.

synthesize all programs in

input output example L that satisfy the intent

Specification

Y
g ’ Data structure with all programs

Figure 3.1: Overview of how our PBE system works.

apply P on all other inputs search best program

Example 1. Given the following two input output pairs: (“Peter Smith” — “Peter”) and (“John
Doe” — “John”), we try to construct the output string from its corresponding input string.

Let’s start with the output string of the first pair — “Peter”. Next, we try to find substrings in
the given input which are equal to a part of the output string. Figure 3.2 shows that there are
many ways of using the input to get parts of the output. The most obvious one is to take the word
“Peter” from the beginning of the input string. Another possibility is to only take a few letters,
like “Pet” in the example. It is even possible to build the output string with single letters, where a
letter can be used multiple times. It does not matter where the letter comes from, as seen by the
letters “e” ant “t” in the example.

12

Chapter 3. Programming by Example 13

“Peter” = {Ip_5}
= {Ip—1,I3-4,I9—10,I3-5}
= {Io—1,I3—4,Io—3,11—2,I4_5}

Figure 3.2: An output string can be assembled in numerous ways from its input string.

There are endless possibilities to represent the output string as a combination of substrings of the
input string. The number of possibilities grows even more if the different kinds of definitions for
one substring are taken into context, i.e. there are multiple ways to define the start and end index
of a substring on a given string.

Example 2. We want to extract “Peter” with a single substring operation. We describe a list of
possible programs to extract the intended substring from the input.

1. Substring from input string index 0 to 5
2. Substring the first word from the left

3. Substring the second word from the right
4

. Substring from the start to the first space character

It is obvious that there are numerous programs that fulfill our intent given only a single input
output pair. Many of these programs only work on the given example, i.e. they are too specific.
To find more general programs, we create sets of possible programs for two input output pairs. By
intersecting both sets we have a much smaller list of programs that fit both examples.

Example 3. Given the programs that satisfy the input output pair “Peter Smith” — “Peter”,
many of these programs do not evaluate to the correct output for the pair “John Doe” — “John”.
The program which takes the first 5 characters is not feasible on the second pair. Only the programs
which select the first word (or the second to last etc.) remain in the set of possible programs.

Remark. Intersecting two sets of programs which share no programs results in an empty set.
However, there are examples where we have a set of input outputs where we have to apply different
programs. Thus, for certain cases we have to abandon the approach of intersecting sets of programs.
A technique to solve this problem is called conditional application and is discussed in Section 4.4.

3.1 Domain-Specific Language

Substrings are only one possible operation applied to the input string to generate the output string.
The set of combinations of these operations is called the search space, as these operations are the
building blocks which are used to synthesize a program.

When developing a synthesizer we need to strike a good balance between expressiveness and ef-
ficiency of the search space of possible programs. On the one hand, the space of the programs

Chapter 3. Programming by Example 14

should be large/expressive enough to include programs that users care about. On the other hand,
the space of the programs should be restrictive enough so that it allows for an efficient search, and
it should be over a domain of programs that enables efficient reasoning [16].

To achieve this balance and to have means to fit the search space, we present a DSL (domain-
specific language) L which only contains a simple set of string operations tailored to our needs. We
describe a modified and simplified version of a DSL for string processing proposed by Gulwani [7].
The DSL contains a set of operations that are applied on the input string and allow us to model
programs.

String structure To conduct complex string operations, e.g. getting all characters between two
braces, we need to have insight into the structure of a given string. A token either represents some
special character (e.g. ‘C, ‘.”, ‘#’, etc.) or a character class that matches a sequence of one or more
characters (e.g. all alphanumeric characters).

We can choose any token, as long as it fulfills two properties. The chosen tokens are disjunct
and need to have at least one occurrence. This allows efficient enumeration of all possible SubStr
operations as there are no overlapping match ranges. Thus, we can describe the strings structure
with only a single token combination.

For better readability, we reference tokens either by representative names or abbreviations. For
example, we refer to the token matching all numeric characters as Numeric or N.

e Start ="~ ¢ Close Brace = CB

e End =% e Open angular bracket = 0OA
e Alphabetic = A e Close angular bracket = CA
e Numeric =N e Dot = .

e Space =8 e Slash =/

e Leading Zero =0 e Hyphen = -

e Open Brace = (0B e Everything Else = E

We cannot add a token for each special character as there are hundreds of thousands of Unicode
characters. Therefore, we use an Else token, that matches everything except all the other used
tokens.

Special tokens — apart from the ones displayed in Figure 2.2 — are:

o Start Token Matches the beginning of the whole string i.e. that “eter” does not match this
token, whereas “Pet” does.

¢ End Token Vice versa matches the end of the whole string.

e Leading Zero Token In our test set there are a number of examples where leading zeros
have to be removed. This token can have conjunctions with the Numeric token, i.e. the
matches overlap. Therefore, Numeric token must not match leading zeros!

Token Sequence A single token — for example Numeric — matches many substrings on a string.
If we want to match a very specific substring a single token is too ambiguous. Thus, we introduce
the concept of token sequences or short TokenSeq. A TokenSeq is a sequence r = {T1,.. ,T,}
of tokens T1,.. ,T,,. A TokenSeq is constructed by merging all its tokens into a new token. The

Chapter 3. Programming by Example 15

merging of the tokens is done by concatenating the regex patterns of T1,.. ,T}, to a single new
regular expression.

Example 1. Given the two tokens 77 := Alphabetic and 7% := Hyphen, the TokenSeq r =
{Ty,T5,T1} and the string "John-Doe - ABC.XYZ":

T) matches " John -/Doe - ABC . XYZ "
T5 matches "John - Doe - ABC.XYZ"

Whereas r only matches: “ John-Doe - ABC.XYZ”

Representing Tokens FEach token can be represented by a regular expression. This has the
following benefits:

1. The Else-Token can be trivially represented by negating all other used tokens.

2. A token sequence can be dynamically built by concatenating the regex pattern of each token
to a new pattern.

3. Getting the total number of matches of a TokenSeq on a string or the c-th position of a
match is trivial. Conventional regex engines in language like Java, C# and others return all
regex matches and their ranges on a string.

CPos operation CPos(k) is a position expression and evaluates to the k*" index in a given
string from the left side (or right side), if the constant k is non-negative (or negative). We denote
the last index of a string with C'Pos(—0).

|s], if k=—o0
[CPos(k)]ls = | k, k=0 (3.1)

|s| + &k, otherwise

Pos operation In many cases evaluating the same constant position is not sufficient to express
the users intent. For example, we have a data set of first and last names and we want to extract
the last name. As the start position of the substring depends on the length of the first name, we
cannot use a constant position, i.e. CPos does not work. Thus, we have to dynamically evaluate
the start position of the substring based on the structure of the input string.

In order to represent relative positions we use Pos(r1, 2, ¢), where r1 and 7o are token sequences
and c is a constant non-zero integer. Pos evaluates to an index ¢ on a string s such that r; matches
some prefir of s[t; : t] and 7 matches some suffiz s[t : to]. Furthermore, ¢ is the ¢*" such match
from the left side (or the right side) if ¢ is positive (or negative) — similar to C'Pos. If not enough
matches exist, an exception is thrown.

Example 2. Given the string “Peter Smith” and the operation Pos(ry,rs,c), where r1 = {7, A,
S}, ro = {A} and ¢ = 1. The first line in Figure 3.3 shows how the tokens 71 and 7 are matched if
they are used independently. The second line shows how the index ¢ is matched if r; is the prefix
and ro is the suffix.

SubStr operation SubStr(pi,p2) returns the substring of the input between the indexes p; and
p2. p is either a C'Pos or a relative Pos. A SubStr operation can be applied on every string, yet p;
or po can evaluate to an illegal position for some strings. For example, taking the substring from
index 7 to 10 on the string "ABC" will not work, as the index is out of bounds. Thus, the SubStr
operation can throw an exception.

Chapter 3. Programming by Example 16

T2
T1
P e t e r S m i t h
= X 5 X 3
t
1 l T2
P (§ t e r S m 1 t h
* X S X $

Figure 3.3: Visualize how ([Pos({", 4,8}, {A},1)]] “Peter Smith”) evaluates to index t.

ConstStr operation ConstStr(s) returns a constant string s, determined at the creation of the
program. It is mostly used for delimiters, prefixes or suffixes which are not part of the input string.

Lookup operation Lookup(tab, col;y, colyy:) is needed for the translation of known entities from
existing, user-provided lookup tables. It consists of a tab, which denotes the table that was used
as a lookup, and two col;;, and col,,;, which denote the input and output column.

The operation searches the input string for a value present in the input column. If a value is found
the value from the output column at the same index is returned. If no value from the input column
is found in the input string, an empty string will be returned.

Concatenating Operations In most cases a single operation (or expression) is not enough to
build the output string from input string s. Therefore, we introduce trace expressions which are
an ordered list of operations made from our language L. Each expression is applied on s and the
results are concatenated to a single string.

[TraceExpression(ey, ..., en)] s = Concatenate([ler] s,- .., [en]l)

Summary Now that we have defined each element in our DSL, we can build complete programs
in our custom language L.

Constant String s := ConstStr(s)

Substring := SubStr(p1,p2)

Position p := CPos(k) | Pos(ry,r2,¢)
Constant Position := CPos(k)
Relative Position := Pos(ri,72,c¢) (3.2)
Regular Expression r :=T1,.. ,T,

Token :=T
Lookup := Lookup(tab, coli,, colout)
Table Identifier := tab

Column Identifier := col

Chapter 3. Programming by Example 17

Example 3. In this example we showcase how powerful our language is for string manipulations.
Consider the following example:

] Input \ Output \

March 2019 | 3. 2019
April 2019 4. 2019
June 2019 6. 2019

One possible trace expression to achieve this transformation looks like the following:

Transform month name to number e; = Lookup(Months, Name, Number)
Dot at the end of month number ez = ConstStr(.)
Space and last word ez = SubStr(Pos({A}, {8}, —1), CPos(—w0))

TraceExpression = {e1, es, e3}

3.2 Data Structure

To store the set of possible programs efficiently we use a DAG (directed acyclic graph). Each node
represents the index between two characters of the output string. Therefore, each edge represents
a substring of the output string, as seen in Figure 3.4. In this example the output string is again
“Peter”, which leads to node indices from 0 to 5.

“t77

V Y‘
“Peter”

Figure 3.4: Directed acyclic graph with a sample of edges where each edge represents a substring
of the output string.

Instead of the substring of the output string, the edges are populated with expressions from our
DSL that evaluate to the respective substring. How the algorithm populates this graph is shown
in Section 4.1. To enumerate all the programs that transform the input string to the output string,
all possible combinations of DSL expressions on a path from 0 to 5 can be concatenated.

Possible Programs CPos(k) is simplified to k
e 0 =5
— SubStr(0, 5)
— ConstStr(“Peter”)
e 0-1-52-53-4-55
— SubStr(0, 1) + SubStr(1, 2) + ...+ SubStr(4, 5)

Chapter 3. Programming by Example 18

— ConstStr(“P”) + SubStr(1, 2) + ...+ SubStr(4, 5)

— ConstStr(“P”) + ConstStr(“e”) + ...+ ConstStr(“r”)

The usage of DAG allows us to store the operations on the edges without the need to enumerate
all possible trace expressions preemptively. This is useful when modifying the graph after its initial
creation. Furthermore, this data structure allows us to intersect the common programs of two
DAGs.

Chapter 4

Synthesis Algorithm

In this chapter we describe precisely how a program is synthesized. First, we show how to build
a DAG containing the information to generate a program for one input output pair. Then we
describe how to efficiently intersect two DAGs to find programs that match two input output
pairs. After that, we show how to enumerate and rank the possible programs to find the best
fitting one. We specify a mechanism to distinguish between different inputs and apply different
programs depending on learned conditions. Lastly, we show how limiting the set of operations can
optimize the algorithm. The core concept of the algorithm is derived from Gulwani [7].

4.1 Building Possible Programs

How to generate all possible programs for an example is a crucial part of the PBE system. Given an
input output pair we start by looping over each substring s of the output string. Each s represents
the intended value that must be returned by the operations on the edge in the DAG. This means
that if we enumerate all possible expressions for each of these substrings we have a complete DAG.
For each edge we now start to search for expressions in our language L which evaluate to the given
substring.

Finding ConstStr expressions for s We add the expression ConstStr(s) to our set of expres-
sions on the edge.

Finding SubStr expressions for s First, we search the input string for occurrences of s. For
each occurrence we denote the index where the occurrence starts with k. We now know that there
is a SubStr(CPos(k), CPos(k + |s|)) that evaluates to s.

To find the equivalent relative positions Pos, we enumerate all possible sequences of tokens from
the position to the left until the start of the input string. If we do the same thing on the right
of the position until the end of the input string, we have two sets of regular expressions and each
combination leads to a valid Pos. Before creating the Pos, the ¢ value must be derived, as it
denotes the c-th occurrence of the patterns in the input string.

Example 1. Given the string “Peter Smith” and the index between “Peter” and the space
character, there are 12 ways to describe this position. The string can be represented as the following
sequence of tokens: Start (7), alphabetic (A), space (8), alphabetic (&), end ($).

“ Peter Smith ”

[ittt [T s TN

=& s & s

19

Chapter 4. Synthesis Algorithm 20

On the left side of the index the token sequence is either A or ~A. On the right of the index the
token sequences are S, SA or SA$. The list of all possible positions is the Cartesian product of the
left and the right side. In this case all combinations of token sequences only occur once. Therefore,
the possible ¢ values are either 1 or —1.

Possible representations of Pos

o Pos(A,8,1) e Pos("A,SA,1)

o Pos(A,8,—1) o Pos("A,SA,—1)
o Pos("A,S,1) o Pos(A,SA$,1)

o Pos("A,S,—1) e Pos(A,SA$,—1)
o Pos(A,8A,1) e Pos("A,SA$,1)
e Pos(A,SA, —1) e Pos("A,SA$,—1)

All the combinations of the Pos generated with k& and k + |s| can be used to create a valid SubStr.

Algorithm 4.1 and Algorithm 4.2 specify how the SubStr expressions are generated in more detail.

Algorithm 4.1 Generate SubStr expressions

1: function GENERATESUBSTR(s: Substring of output, input: Input string)
2: subStrings <« {}

3 for each k s.t. k is the start of substring s in input do

4: y1 < GENERATEPOSITIONS(k, input)

5: y2 < GENERATEPOSITIONS(k + |s|, input)

6: for each pos; in y; do

7: for each pos, in y2 do

8: subStrings := subStrings |J {SubStr(pos;,pos,)}
9: end for

10: end for

11: end for

12: return subStrings

13: end function

Algorithm 4.2 Generate Pos and C'Pos expressions

1: function GENERATEPOSITIONS(7: index of position, input: Input string)

2 allPos = {C'Pos(i), C Pos(—(|input| — 7))} > Add constant positions

3 for each TokSeq; s.t. TokSeq; is a Token Sequence from k; to i for any k1 < i do

4 for each TokSeq, s.t. TokSeq, is a Token Sequence from i to ko for any ks > i do
5: TokSeq; <« TokSeq, ++ TokSeq, > Concatenate the sequences
6
7
8
9

¢ « i is the c-th occurrence of TokSeq;, in input
cpaz — Number of occurrences of TokSeqp, in input
allPos := allPos (| {Pos(TokSeq,, TokSeq,,c)}
: allPos := allPos (| {Pos(TokSeq, TokSeq,,—(crraz — ¢))}
10: end for

11: end for
12: return allPos

13: end function

Chapter 4. Synthesis Algorithm 21

Finding Lookup expressions for s The string s is compared to all values in all lookup tables.
If the value is found the values of all columns of the corresponding row are searched in the input
string. If one of this values is found, a new Lookup expression with the references to the table and
columns is added to the set of expression for the edge.

4.2 Intersecting Programs

To find a program that satisfies two input output examples we intersect the DAGs of both pairs.
To do this we first build the Cartesian product of the nodes of both graphs. This means we create
a new node for each combination of the nodes from the two graphs. The set of possible operations
on an edge is determined by the intersection of the two sets of the corresponding edges in the old
graph. For example the edge (1/2) — (4/5) would have the intersections of the sets of (1) — (4)
and (2) — (5).

Figure 4.1 shows two DAGs with their edges populated with expressions. The DSL expressions are
simplified to a set of single uppercase letters. In this example we intersect only letters that are the
same. The intersection of “AB” and “BC” would therefore result in “B”.

0 0
A AX ABCD
N 1
BC UBY ‘ OX WX XYZ
2 0 4 e 5 2

Figure 4.1: Two graphs before intersection. Source and target nodes are bold.

The intersection of two DAGs is built by calculating their Cartesian product. The resulting graph
looks like a matrix with the first graph acting as rows and the second graph acting as columns.
Figure 4.2 shows the intersected graph of the two graphs in Figure 4.1 — the source (0/0) and
target (5/2) nodes are bold.

Chapter 4. Synthesis Algorithm 22

0/0 0/1 0/2

e

1/1 1/2

2/0 2/1 2/2

A
\
BC
A
B Y
\
3/0 c 3/1 3/2
C X
4/0 \\\\\\\\\\g\\\\\\\N v \\\\\\\\\\\\\\zi\\\\\\\\\\N 4/2
K K

5/0 5/1 5/2

Figure 4.2: Full graph after building the Cartesian product of two graphs and intersecting the
edges. The nodes are arranged in a matrix where one graph represents the rows and the other the
columns.

The problem with this new graph is that its node size is the product of the sizes of the two original
graphs. This does not scale very well, since the number of nodes grows quadratically. Therefore,
we need to optimize the result of the intersection.

Because all the graphs are acyclic, there are no edges in horizontal or vertical direction. As we are
only interested in paths that lead from source to target this characteristic allows us to discard some
nodes. No node on the “border” of the matrix (underlined) can lead from source to target, except
for the source and target nodes itself. We can discard all these nodes and the edges connected to
it. Furthermore we can discard all edges that contain an empty set of expressions, as they cannot
be used to build a program. The removed elements are grayed out in Figure 4.3

Chapter 4. Synthesis Algorithm 23

0/0

1/1

2/1

3/1

4/1
XY

5/2

Figure 4.3: Graph with border nodes and empty edges removed

The second step in optimizing the size of the graph is to remove all nodes with only ¢ngoing or
outgoing edges, except for source and target. These nodes, and their connecting edges, cannot
be part of the path. After the nodes (1/1) and (4/1) are removed from the example, the graph
is reindexed to its minimal size. The end result of this process is shown in Figure 4.4. The only
possible program in this example would be “AX”".

A X

6O —m—m— 1 —— 2

Figure 4.4: End result of the intersection of two DAGs.

The allowed intersections of our DSL elements are shown in Equation (4.1). All other intersections
return .

SubStr(py, p2) iff p1 = p} A pa = ph
CPos(k) iff k =k

Pos(ry,ra,¢) iff iy =1 Arg=rhb ne=¢

SubStr(p1, p2) N SubStr(p), ph)
CPos(k) n CPos(kK'
Pos(r1,m2,¢) n Pos(r, 15, ¢
ror=rif =T ATo=TsAn... T, =T,
ConstStr(s) n ConstStr(s’) = ConstStr(s) iff s = s
)

Lookup(tab, col;p, colou) N Lookup(tab', coll,, , coll..,) = Lookup(tab, colip, coloyt)

mo

)
)

iff tab = tab’ A coly, = coll,, A colgys = coll,,
(4.1)

Chapter 4. Synthesis Algorithm 24

4.3 Finding and Ranking Programs

As mentioned before, all combinations of expressions on paths that lead from source to target are
programs which fulfill the intent set by the examples. The most simple solution would be to take
just the first program. This has the drawback that we cannot prefer more generic programs over
specific programs. Therefore, we have to rank the programs according to some metric. Each DSL
operation has a cost which is used to find simpler programs that are not unnecessarily complex.
However, computing the cost of each trace expression over each path is computationally expensive.
This is due to the fact that the combination of all expressions grows exponentially with the length
of the path.

We use a two-step approach to find an adequate program in reasonable time. First, we find the
cheapest path to enumerate its programs and then we choose the program with the lowest cost
from this set.

Finding the cheapest path to enumerate is a shortest path problem where the weight of an edge is
the number of expressions. The weight of a path is the product of all weights of its edges, as this
represents the number of possible programs on this path. This heuristic allows us to find a set of
operations that is cheap to enumerate but also contains many promising programs. As the graph
is acyclic and already sorted in topological order of the indices, finding the shortest path is trivial
and can be done in linear time.

For the cheapest path we now enumerate all possible programs and calculate the cost according
to Equation (4.2). The ConstStr and CPos operations are heavily penalized such that a more
generic program is preferred. The main reason is that a program with only one pair of examples
should use a SubStr operation with relative Pos whenever possible, as the chance of a ConstStr
operation to fit the next example pair is relatively low. On the other hand the Lookup operation
has a negative cost to incentivize the synthesizer to use the additional information given by the
lookup tables.

Cost(SubStr(p1,p2)) = C’ost(pl) x Cost(pa)
Cost(CPos(k)) =
Cost(Pos(ri,ra,¢)) = C’ost(rl) Cost(rsy) (4.2)
Cost(r) = |Th, Tz, ..., Ty|
Cost(ConstStr(s)) = 250
)

)
)

Cost(Lookup(tab, coliy, col oyt

4.4 Conditional Application

The problem with the solution so far is, that there is no valid program when the intersection of two
DAGsS results in an empty DAG. To combat this, we partition the DAGs such that each partition
yields a program when all its DAGs are intersected. Then we have to find a classifier, which when
applied to a new input, tells us the partition from which the program should be taken.

To partition the programs we choose a simple iterative approach. The DAG of the first input
output pair builds the first partition. If the DAG from the second input output pair yields at
least one program when intersected with the first DAG, it is added to the partition. Otherwise, we
create a new partition with the second DAG. We continue to add new input output pairs to the
first partition and create new partitions when the intersection does not result in a program that
satisfies the requirements. If a new input cannot be classified it is discarded.

To find a classifier that fits exactly one partition we use a one versus all approach for each partition.
This means that we search a classifier that matches all inputs from the given partition and none

Chapter 4. Synthesis Algorithm 25

of the inputs from all other partitions. The classifier itself is in the disjunctive normal form. Each
conjunction in the classifier matches some of the inputs from the partition and none of the inputs
from all other partitions. This represents the algorithm which we use to find the classifiers as well.
While there are still inputs which are not covered by one of the conjunctions we search for a set of
predicates which match for some of the not yet classified inputs and none of the inputs we want to
exclude. As predicates we use the Match(r, ¢) function and its negation. This allows us to classify
the inputs according to the TokenSeq r and the number of its occurrences c. The set of possible
predicates are all Match(r, c) that match any of the input. Algorithm 4.3 and Algorithm 4.4 show
the algorithm to find a classifier for a partition.

Algorithm 4.3 Generate Classifier

1: function GENERATECLASSIFIER(includes: input strings to include, excludes: input strings
to exclude)

2: classifier « {}

3: includesToClassify < includes

4: while |includesToClassify| > 0 do = Loop for conjunct expression
5: excludesToClassify < excludes

6: classifyingInputs <« includesToClassify

7 oldIncludesToClassify < includesToClassify

8: conjunct « {}

9: while |excludesToClassify| > 0 do > Loop for disjunct expression
10: 0ldExcludesToClassify <« excludesToClassify

11: predicate «— GETPREDICATE(classifyingIncludes, excludesToClassify)

12: if predicate = {} then

13: return {} > No classification possible
14: end if

15: conjunct := conjunct |J {predicate}

16: let classifyingInputs be s.t. only values not matching the predicates remain.

17: let excludesToClassify be s.t. only values not matching the predicates remain.
18: if oldExcludesToClassify = excludesToClassify then

19: return {} = No classification possible
20: end if
21: end while
22: if 01dIncludesToClassify = includesToClassify then
23: return {} > No classification possible
24: end if
25: classifier := classifier (J {conjunct}
26: end while
27: return classifier

28: end function

Chapter 4. Synthesis Algorithm 26

Algorithm 4.4 Get the predicate with the biggest impact on the partitioning

1: function GETPREDICATE(includes: input strings to include, excludes: input strings to ex-
clude)

2 bestScore «— —1

3 bestMatch « {}

4 for each match s.t. match is a match(r,¢) in includes or excludes do

5 predicate := match > Positive match
6: let matchInclude be the number of includes that predicate matches.

7 let notMatchExclude be the number of excludes that predicate does not match.
8 score := matchInclude * notMatchExclude

9 if score > bestScore then

10: bestScore := score

11: bestMatch := predicate

12: end if

13: predicate := —match > Negative match
14: let matchInclude be the number of includes that predicate matches.

15: let notMatchExclude be the number of excludes that predicate does not match.
16: score = matchInclude * notMatchExclude

17: if score > bestScore then

18: bestScore := score

19: bestMatch := predicate
20: end if
21: end for
22: return bestMatch

23: end function

4.5 Synthesizer

In this section we present how all components interact with each other. The public interface of
our program synthesizer consists of a method Synthesize that takes an input output example
and returns a program p which contains a list of partitions. Each partition contains a classifier to
determine if a string matches the partition (see Section 4.4) and a trace expression to transform
the input. Thus, when p is applied on an input string a matching partition is searched and its
trace expression applied on the string. If none of the partitions in p match the input, we return
the input.

Listing 4.1 shows the structure of a sample program. The program can be read like a “if-elseif” state-
ment in conventional programming languages. For example, given two input string “0078225.1.09”
and “1004425.A.00” the first partition will match the first string and return “78225”, because the
expression extracts everything after the leading zeros until the first dot. Whereas the second string
will match the second partition and return “1004425”, because the expression extracts everything
from the start to the first dot.

1 Program[

2 CASEC ((P, 1, {7, 0+, N-0})))

3 TraceExpr (SubStr (Pos(TokenSeq(~™, 0+), TokenSeq(N-0), SimpleInt(1)), Pos(d
TokenSeq(N-0), TokenSeq(.), SimpleInt(1))))°,

4 CASEC ((P, 1, {7, N-0, .})))

5 TraceExpr (SubStr(Pos(TokenSeq(~), TokenSeq(~, N-0), SimpleInt(1)), Pos(
TokenSeq(N-0), TokenSeq(.), SimpleInt(1))))°

Chapter 4. Synthesis Algorithm 27

6]
Listing 4.1: Sample program structure with two partitions.

Synthesize works by first building the DAG g from the input output example (see Section 4.1).
The first time Synthesize is called a new program is created with a single partition. This first
partition is initialized with a default classifier that matches every string. Note that applying a
trace expression on a string might fail. The default classifier is changed once a second partition is
added.

If the first program already exists, we iterate over its partitions and intersect g with the DAG g;;
from the partition. If the result is empty, we continue with the next partition, i.e. g cannot be part
of the current partition. Else we update the current partition by setting the g,; to the intersected
DAG, finding and setting a new trace expression from the intersected DAG (see Section 4.3) and
adding the input to the partitions list of inputs.

If none of the partitions match the new DAG, we add a new partition to p. We use the GenerateClassifier
to generate a classifier that matches none of the other classifiers (see Algorithm 4.3). Note that
adding a new partition might fail, because GenerateClassifier can return an empty set. In that

case we simply discard the new input output example.

4.6 Optimization

In this section we describe what optimizations we made in the implementation of the algorithm.

According to our algorithm we create the Pos elements for all sequences of tokens left or right
of the position. We analyzed the token sequence lengths of the programs synthesized during the
benchmark and all the token sequences generated while populating the DAG. The final program
only used token sequences with 1 to 4 tokens. The initial DAGs had tokens sequences with a length
of up to 39. Figure 4.5 shows the distribution of both lengths.

8

= —— Used

2 60 1

= Generated

@

g 40 -

3

=

= 20 1

<

kS

BO O L T _ T T T T T T T T
0 5 10 15 20 25 30 35 40

Figure 4.5: Distribution of the length of token sequences

The results in Figure 4.5 show that it is clearly inefficient to generate all token sequences. Thus,
an upper limit is needed. Furthermore, a similar problem occurs when building the predicates for
the conditional application. These are token sequences as well. However, we use a scoring system
to find the best predicate, shown in Section 4.4. Therefore, we do not need an upper limit of the
length but a preferred length of the token sequence. This only applies if two predicates are equally
effective, in this case the predicate with the length closer to the preferred length is taken.

A third variable in the decision for the token lengths is if the character and number tokens should
be split or if an alphanumeric token should be used. We evaluate this variables according to a

Chapter 4. Synthesis Algorithm

28

benchmark score. How this score is built exactly is shown in Section 5.1. The scores of the PBE
system for combined token and for split tokens are shown in Table 4.1.

Max token length

2 3 4
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/
Preferred 1 | 98.40 9859 | 98.75 98.73 | 98.75 98.37 | 98.75 98.73 | 98.75 98.73
predicate 2 | 98.60 98.63 | 98.79 98.90 | 98.79 97.94 | 98.79 98.90 | 98.79 98.90
length 3 | 98.58 98.60 | 98.80 98.94 | 98.80 98.31 | 98.80 98.94 | 98.80 98.94
4 | 98,58 98.60 | 98.80 98.94 | 98.80 98.94 | 98.80 98.94 | 98.80 98.94
5 | 98.58 98.60 | 98.80 98.94 | 98.80 98.94 | 98.80 98.94 | 98.80 98.94

Table 4.1: Score without (with) distinction of characters and numbers left (right)

As seen in Table 4.1, the score converges in the lower right corner of both tables. This shows
that there is no improvement possible by increasing the length further. We see that the best
score is achieved by using the character and number token separately. As each of the lower right
corner result is the same score, we use the lowest possible token length because that means fewer
calculations are needed. The final algorithm uses a maximal token length of 2 and a preferred

predicate length of 3.

Chapter 5

Results and Discussion

A PBE system can be measured in different dimensions depending on the objectives it should
solve. We show how we decided to quantify our progress. Furthermore, we compare our system to
a baseline score. The test set consists of real world data from Shouldcosting and generated data
for the known-entity-translation (see Section 2.1).

5.1 Metrics

In this chapter we discuss different possible metrics to score PBE systems and present the algorithm
used in the baseline and in our PBE system.

To measure and compare PBE systems we present the following three approaches:

e Synthesis Time How long it takes to synthesize a program.

¢ Program Complexity Has influence on the execution time of a program on an input.
e Number of Interactions The fewer examples needed for the synthesizer, the better.

Although these metrics are different they are non-conflicting, i.e. one can use all metrics simulta-
neously. However, we only use the number of interactive rounds to show the results of our PBE
system (Section 5.2). There are two reasons. Firstly, it is simple to understand for people who are
unfamiliar with program synthesis. Secondly, we compare the metric score with the score of the
baseline algorithm to determine the success of our work. As the baseline algorithm always runs
in constant time and the generated program is simply a key value dictionary, measuring synthesis
time and program complexity does not make sense.

Baseline The most simple baseline algorithm — that still can be considered PBE — is to simply
store each input output example in a key value map. Given an input string, its corresponding
output is returned if the value is present in the map, else the correct output value has to be
provided and the rule count is increased.

Remark. The test set contains a handful of inputs that are ambiguous, i.e. map to multiple outputs.
In this case, the entry in the key value map is overwritten.

Unsurprisingly this approach yields a decent score if the data set contains a lot of duplication
(Section 5.2).

29

Chapter 5. Results and Discussion 30

Algorithm 5.1 Baseline Benchmark
Input: S: Set of (o, s) pairs

1:r:=0 > Number of rules
2 M:K -Vt | M[k—v](z)=v for z =k, otherwise M (z) > Map or Dictionary
3: for each (o,s) in S do

4 if M(o) = 1 then

5: Mo — s]=s > Add new input output example
6: ri=r+1

7 end if

8: end for

9: return 1/ |S|-r > Calculate benchmark score

Reference The benchmark of our PBE system is more complicated for two reasons.

Firstly, the order of the input output examples set has an impact on the benchmark score. The
benchmark feeds the first example from the set to the synthesizer and applies it on the following
inputs — similar to the integrated interaction model described in Section 1.3. Therefore, different
programs are synthesized depending on which examples are used. Table 5.1 illustrates this issue
with some example input output pairs. We solve this problem by creating 5 randomly shuffled
versions of each test set.

Input Output Result

1995 24 12 1995 1995 = p; = SubStr(CPos(0), CPos(5))
Bill Davis Bill Bill

Dori Jones Dori Dori

Alexander Cook | Alexander | Alex =py=...

Input Output Result

Alexander Cook | Alexander | Alexander = p; = SubStr(CPos(0), CPos(9))

1995 24 12 1995 1995 24 1 | = p» = p1 v SubStr(CPos(0), Pos(...))
Bill Davis Bill Bill Davi =p3=...

Dori Jones Dori Dori

Table 5.1: Depending on the order of input output pairs the generated programs are different.

Secondly, the baseline is always able to synthesize a program in a constant time. Our synthesizer
might not be able to generate a program for a given example or synthesizing takes longer than
acceptable for an interactive, user-facing application. Therefore, we introduce time out and excep-
tion handling in the reference benchmark (see Algorithm 5.2). This time out can be used to limit
the time the synthesizer has to find a program.

Chapter 5. Results and Discussion 31

Algorithm 5.2 Reference Benchmark

Input: S: Set of (o, s) pairs

1: r:=0 > Number of rules
2. f:==0 > Number of fails
3 pi={} > Synthesized program
4: for each (o,s) in S do

5: if p ={} then

6: p = SYNTHESIZEPROGRAM(o, input, p)

7: if p = {} then continue = Continue loop iff no program is generated
8: end if

9: 5:=p(o) > Apply the current program on the input
10: if §# s then > Wrong output i.e. try to extend p
11: p = SYNTHESIZEPROGRAM(o, input, p) > Extend current program
12: end if

13: end for
14: return 1 — (r + f) / |S] > Score

Algorithm 5.3 Helper function to synthesize program

1: function SYNTHESIZEPROGRAM(o: Input, s: Output, p: Program) = Program

2 try

3 P := SYNTHESIZE(0, $) = Call the stateful synthesizer
4 catch TimeoutException > Synthesizer can timeout
5: f=f+1

6 return p > Failed to synthesize a program
7 end try

8 ri=r+1 > Increase rules count
9: return p > Return newly synthesized program

10: end function

5.2 Results

The best score the baseline benchmark achieved was 97.02%. This is due to the fact that the test
sets show very little variance. Our PBE system however scored 98.94%. This means that the user
only needs to manually process 1.06% of the inputs. All other outputs can be processed by the
PBE system. Figure 5.1 shows the score compared to the baseline for each test set.

Chapter 5. Results and Discussion 32

BERN_A

BERN_B

BOSS_A Il Baseline
s PBE

BOSS_B

KHS

Lookup

POLY

TEE

0% 20% 40% 60% 80% 100%
Score

Figure 5.1: Benchmark results of the PBE system and the reference algorithm.

The BERN_A test set demonstrates why our PBE system outperforms the baseline. This set has
almost no duplicate entries but all entries have the same pattern. We only need two examples to
process the whole test set. One takes the string from start to the first dot. The other does the
same but removes leading zeros from the string. The following examples represent the test set
adequately:

e 1010325.B.00 — 1010325
e 1014835.A.00 — 1014835
« (0049205.0.00 — 49205
e 0077675.1.00 — 77675

The BOSS__B test set represents the cases where neither the baseline nor the PBE system achieve
any advancement compared to processing each entry by hand. The set contains a use case where
the user needs contextual information and the output cannot be deduced from the input. The
contextual information cannot be taken from lookups as the outputs differ for the same inputs.

e AlMgSi — gehéartet
e AlMgSi — trovalisiert

Aside from the number of interactions we dissected the synthesis time. This is not a deciding
factor for the optimization of the algorithm but only a conclusive analysis. Figure 5.2 shows the
distribution of the synthesis time on all test sets. The results are measured three times (Intel Core
i7-7700HQ, 32 GB RAM) and are averaged. The synthesis time refers to the time it takes to process
one single input output pair. This includes the generation of the DAG, the intersection with the
existing partitions and the classification of the input value.

Chapter 5. Results and Discussion 33

120 4

» 100 1

g

<

—

20 g0 -

—

o

3

— 60_

5]

e}

z

2 40
20 -
O_

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Synthesis time [s]

Figure 5.2: Histogram of synthesis time, N = 584
In Figure 5.3 the synthesis time is broken down into the different test sets. The graph shows the

percentage of all the programs per test set that were synthesized in less time than the respective
time on the x-axis.

Chapter 5. Results and Discussion

34

100%
< 80%1
[}
N
0
[
=
1=
o> 60%
]
: —o-
a0 ——
g 40%
kS .
Q
T ——
o 20%‘ o
e
0% A “

Total
BERN_A
BERN_B

BOSS
BOSS
KHS
Looku
POLY
TEE

_A

B

p

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Time [s]

Figure 5.3: Synthesis time per test set

0.40

Figure 5.3 and Figure 5.2 shows that the synthesis time never exceeds 400 ms. The synthesis
time is an important feature of a PBE system, as the maximal synthesis time for most real-life
scenarios should not exceed 500 ms [22]. We use this 500 ms timeout restriction to compare our
PBE system to the state of the art synthesizer: Microsoft PROSE. Figure 5.4 shows that our PBE
system performs almost as good or even better than PROSE in all use cases. Considering time and
resource disparity remarkably well in the two synthesizers, our system performs remarkably well.

Chapter 5. Results and Discussion 35

BERN_A

BERN_B

BOSS_A

BOSS_B

KHS

Lookup

POLY

TEE

0% 20% 40% 60% 80% 100%
Score

Figure 5.4: Benchmark results of our PBE system and the Microsoft PROSE.

Chapter 6

Conclusion

The PBE system was integrated into the data wrangling tool (DIC) of the customer. This enables
string processing and known-entity-translations trough input output examples.

First, we built a prototype PBE system which could only extract simple substrings. Then we
extended the system to handle more complex string operations and known-entity-translations.
Lastly, we wrapped the system into a decision tree which allowed conditional application of the
generated programs.

In the following sections we show the contributions of our PBE system and how it could be
extended.

6.1 Contribution

With the PBE system we built we not only improved the data wrangling workflow of our customer
but also obtained insight on how a PBE system can be built and adapted to given business needs.
Our PBE system achieved a score of 98.94% whereas the baseline only scored 97.02%. Furthermore,
a state of the art system scored 98.76% on our benchmark data set.

Simple string transformation We show a comprehensible algorithm for string transformation.
This algorithm cannot only be recreated but also easily extended.

Business aware We describe how to tailor a PBE system to the business need of the customer.
This knowledge of the problem domain allows for more specific, and in a given use case better,
solutions than a general purpose PBE system.

Realizable Our results show that it is possible to build a conclusive PBE system in limited time.
This is an important information for businesses, as many of the alternative PBE systems are not
commercially available.

6.2 Outlook

There are many approaches to further extend the PBE system described in this thesis. The most
promising in terms of accuracy or possible applications are listed below.

36

Chapter 6. Conclusion 37

Ambiguity handling Currently we synthesize multiple programs that satisfy the user intent,
yet — as seen in Section 4.3 — we only take best program. This is somewhat wasteful, since
we never use the other programs. However, we can leverage them to enable easier interaction.
The synthesizer can run a set of synthesized programs on each new input to generate a set of
corresponding outputs for that input. The synthesizer can highlight the inputs that cause multiple
distinct outputs for the user to take action.

Overlapping Tokens In our algorithm a string is represented by a single token sequence. This
is very efficient during the building of the DAG. An alternative to this is using tokens which are not
distinctive. This means that a character can be expressed by more than one token. A prominent
example of this is using alphanumeric, character and number tokens. This allows more generic
programs if needed but at the same time enables the specific distinction between characters and
numbers.

Multiple Inputs Instead of just using one input per output, it is possible to use more than one
input value. In this case, the SubStr and Lookup operation need an additional parameter which
denotes the used input. This allows the combination of values from different inputs.

Extending DSL The PBE system is easily extendable for further DSL elements. New elements
can be added to the set of possible operations on an edge of the DAG, similar to the Lookup
operation. A possible new DSL operation can be a date translation which would transform a date
to its corresponding week day.

SyGuS-Comp Syntax-Guided Synthesis Competition (SyGuS-Comp) is an annual program syn-
thesis competition which allows solvers for syntax-guided synthesis problems to compete on a large
collection of benchmarks [23]. The SyGuS-comp consists of four tracks: general track, conditional
linear integer arithmetic track, invariant synthesis track, and — since 2016 — the programming
by example track.

“The SyGuS problem is to find a function f that meets the specified syntactic and semantic
constraints. The syntactic constraint is given as a grammar deriving a set Exp of expressions that
captures the candidate implementations of f. The semantic constraint is a logical formula Spec
that captures the desired functionality of f” [24]. SyGuS problems are specified in the SyGuS input
format (SyGusS-IF).

We did not participate in SyGuS-Comp, as our project goal is not to create a general purpose
PBE system. Nor is the implementation of the SyGuS-IF in the scope of this project. Nonetheless,
SyGuS is an interesting project and the only standardised method to compare different program
synthesizers. Participating in the SyGuS-Comp would be interesting and can be a part of future
work.

Bibliography

1]

2]

[10]

[11]

[12]

D. Yurichev, SAT/SMT by Ezample, 2019. [Online]. Available: https://yurichev.com/SAT
SMT.html

S. Gulwani, “Programming by examples (and its applications in data wrangling),”
in Verification and Synthesis of Correct and Secure Systems. 10S Press, January 2016.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/programming-
examples-applications-data-wrangling /

D. C. Halbert, “Programming by example,” Ph.D. dissertation, 1984, aAI8512843.

R. Singh, “Accessible programming using program synthesis,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA , 2014. [Online]. Available:
http://hdl.handle.net/1721.1/93834

T. Lau, “Why PBD systems fail: Lessons learned for usable AI,” Florence, Italy, 2008.

R. Bodik, “Program synthesis: Opportunities for the next decade.” [Online]. Available:
https://youtu.be/PI99A08YS83E

S. Gulwani, “Automating string processing in spreadsheets using input-output examples,”
in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’11. New York, NY, USA: ACM, 2011, pp. 317-330.
[Online]. Available: http://doi.acm.org/10.1145/1926385.1926423

R. Singh, “Blinkfill: Semi-supervised programming by example for syntactic string
transformations,” Proc. VLDB Endow., vol. 9, no. 10, pp. 816-827, Jun. 2016. [Online].
Available: http://dx.doi.org/10.14778/2977797.2977807

S. Gulwani, “Data wrangling using programming by examples,” July 2015.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/data-wrangling-
using-programming-examples/

V. Raman and J. M. Hellerstein, “Potter’s wheel: An interactive data cleaning system,” in
Proceedings of the 27th International Conference on Very Large Data Bases, ser. VLDB ’01.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 381-390. [Online].
Available: http://dl.acm.org/citation.cfm?id=645927.672045

E. Torlak, M. Vaziri, and J. Dolby, “Memsat: Checking axiomatic specifications of memory
models,” SIGPLAN Not., vol. 45, no. 6, pp. 341-350, Jun. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1809028.1806635

A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin, and R. Alur,
“Transit: Specifying protocols with concolic snippets,” SIGPLAN Not., vol. 48, no. 6, pp.
287-296, Jun. 2013. [Online]. Available: http://doi.acm.org/10.1145/2499370.2462174

A. S. Koksal, Y. Pu, S. Srivastava, R. Bodik, J. Fisher, and N. Piterman, “Synthesis of
biological models from mutation experiments,” SIGPLAN Not., vol. 48, no. 1, pp. 469-482,
Jan. 2013. [Online]. Available: http://doi.acm.org/10.1145/2480359.2429125

38

https://yurichev.com/SAT_SMT.html
https://yurichev.com/SAT_SMT.html
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
http://hdl.handle.net/1721.1/93834
https://youtu.be/PI99A08Y83E
http://doi.acm.org/10.1145/1926385.1926423
http://dx.doi.org/10.14778/2977797.2977807
https://www.microsoft.com/en-us/research/publication/data-wrangling-using-programming-examples/
https://www.microsoft.com/en-us/research/publication/data-wrangling-using-programming-examples/
http://dl.acm.org/citation.cfm?id=645927.672045
http://doi.acm.org/10.1145/1809028.1806635
http://doi.acm.org/10.1145/2499370.2462174
http://doi.acm.org/10.1145/2480359.2429125

[14]

[15]

[16]

[17]

[20]

[21]

S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Foundations and Trends®
in Programming Languages, vol. 4, mno. 1-2, pp. 1-119, 2017. [Ounline]. Available:
http://dx.doi.org/10.1561 /2500000010

R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation for introductory
programming assignments,” SIGPLAN Not., vol. 48, no. 6, pp. 15-26, Jun. 2013. [Online].
Available: http://doi.acm.org/10.1145/2499370.2462195

S. Gulwani, “Dimensions in program synthesis,” in Proceedings of the 12th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming, ser.
PPDP ’10. New York, NY, USA: ACM, 2010, pp. 13-24. [Online]. Available:
http://doi.acm.org/10.1145/1836089.1836091

W. K. Hastings, “Monte carlo sampling methods using markov chains and their
applications,” Biometrika, vol. 57, mno. 1, pp. 97-109, 1970. [Online]. Available:
http://www.jstor.org/stable/2334940

A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai, “A machine learning framework
for programming by example,” 30th International Conference on Machine Learning, ICML
2013, pp. 187-195, 01 2013.

S. C. Brailsford, C. N. Potts, and B. M. Smith, “Constraint satisfaction problems:
Algorithms and applications,” FEuropean Journal of Operational Research, vol. 119, no. 3,
pp. 557 — 581, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0377221798003646

E. Torlak and R. Bodik, “Growing solver-aided languages with rosette,” in Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, ser. Onward! 2013. New York, NY, USA: ACM, 2013, pp.
135-152. [Online]. Available: http://doi.acm.org/10.1145/2509578.2509586

——, “A lightweight symbolic virtual machine for solver-aided host languages,”
SIGPLAN Not., vol. 49, no. 6, pp. 530-541, Jun. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2666356.2594340

O. Polozov and S. Gulwani, “Program synthesis in the industrial world : Inductive , incre-
mental , interactive,” 2016.

S. Padhi. (2019) Syntax-Guided Synthesis Comeptition. [Online]. Available: http://sygus.org/

R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based program synthesis,”
Commun. ACM, vol. 61, no. 12, pp. 84-93, Nov. 2018. [Online]. Available: http:
//doi.acm.org/10.1145/3208071

http://dx.doi.org/10.1561/2500000010
http://doi.acm.org/10.1145/2499370.2462195
http://doi.acm.org/10.1145/1836089.1836091
http://www.jstor.org/stable/2334940
http://www.sciencedirect.com/science/article/pii/S0377221798003646
http://www.sciencedirect.com/science/article/pii/S0377221798003646
http://doi.acm.org/10.1145/2509578.2509586
http://doi.acm.org/10.1145/2666356.2594340
http://doi.acm.org/10.1145/2666356.2594340
http://sygus.org/
http://doi.acm.org/10.1145/3208071
http://doi.acm.org/10.1145/3208071

n w University of Applied Sciences and Arts Northwestern Switzerland
School of Engineering

Title of work:

Data Wrangling Using Programming by Example
Extending String Manipulation with Known-Entity-Translations

Thesis type and date:
Bachelor’s Thesis, March 2019

Supervision:

Simon Felix

Customer:

Shouldcosting GmbH

Students:

Name: Hasan Selman Kara Name: Patrick Burkhalter

E-mail: hasan.kara@students.fhnw.ch E-mail: patrick.burkhalter@students.fhnw.ch
Student-ID: 15-652-969 Student-ID: 15-652-209

Semester: 8. Semester: 8.

Statement regarding plagiarism:

By signing this statement, we affirm that we independently produced this paper and adhered to
the general practice of source citation in this subject-area.

Hasan Selman Kara, Windisch, 21.3.2019:

Patrick Burkhalter, Windisch, 21.3.2019:

	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Objective
	1.2 Context
	1.3 Interaction Model
	1.4 State of Research
	1.4.1 Synthesis of Programs in Many Domains
	1.4.2 User Intent Specification
	1.4.3 Program Space
	1.4.4 Search Technique

	2 Problem Definition
	2.1 Data Analysis
	2.2 Examples

	3 Programming by Example
	3.1 Domain-Specific Language
	3.2 Data Structure

	4 Synthesis Algorithm
	4.1 Building Possible Programs
	4.2 Intersecting Programs
	4.3 Finding and Ranking Programs
	4.4 Conditional Application
	4.5 Synthesizer
	4.6 Optimization

	5 Results and Discussion
	5.1 Metrics
	5.2 Results

	6 Conclusion
	6.1 Contribution
	6.2 Outlook

	Bibliography

