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Abstract 

Chatbots have become more prevalent in recent years, due to increasing demand as well as 
improvements in the fields of natural language processing (NLP) and machine learning. Within the 
field of education research, past studies have rightfully questioned the usefulness of chatbots as means 
of acquiring a foreign language. A review of the relevant literature shows that the applied chatbots 
were rule-based and limited to chitchatting in an open-domain. 

In this thesis we propose an alternate approach to using chatbots in English as a second language 
(ESL) classrooms. We evaluated the current state of technology to develop a machine learning-based 
chatbot capable of detecting errors in the students’ language. The chatbot’s domain is confined to 
interacting with the students in a room reservation roleplay exercise. Prerecorded transcripts of ESL 
student interactions were used to derive wordings of intents and utterances which served to train and 
test the chatbot’s machine learning models. Since misspellings are the most common errors in ESL 
students’ language, a language error detection was introduced into the chatbot’s architecture, 
providing additional feedback to the students and thereby mitigating repetitive errors. 

To test the performance of our solution, usability tests and a survey were conducted. The usability 
tests showed that the bot understands a majority of ESL students’ inquiries and is capable of 
responding in a comprehensible manner. The survey results revealed that the intent recognition model 
could have benefitted from a wider range of wordings. In a separate PhD project [1], the added value 
of applying our chatbot in ESL classrooms will be assessed from a language learning perspective. 
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Glossary 

Term Definition 

AIML Artificial Intelligence Markup Language is an XML-based standard. 

API An application programming interface offers a defined set of methods to 
be called by software. 

CNN Convolutional neural network – A feed-forward neural network 
architecture. 

CRF Conditional random field – A classification model using conditional 
probabilities. 

DFS Depth-first search is an algorithm used to traverse graph-like data 
structures.  

DSL Domain-specific language 

ESL English as a second language 

GEC Grammatical Error Correction 

heteronym Words with the same spelling, but different pronunciation and meaning 

homonym Words with the same spelling and pronunciation, but different meaning 

LSTM Long short-term memory are neural network units addressing the problem 
of vanishing gradients in CNN. 

NLG Natural language generation focuses on generating natural language from 
systems using models or other forms. 

NLP Natural language processing allows analyzing, understanding and 
generating written or spoken texts. 

NLU Natural language understanding is a subfield of NLP and is used for 
reading comprehension purposes. 

OOV Out-of-vocabulary, a non-existing word in a specific word vector 

RNN Recurrent neural network - Neural network architecture 

SDK A software development kit allows to develop programs for an existing 
platform. 

SPA Single-page application is a web application that dynamically rewrites its 
pages instead of requesting it from a server. 

turn A turn is a request/response cycle between the chatting partners. 

XML Extensible Markup Language allows to define rules encoded in documents, 
which are human-readable and can be processed by machines. 
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1 Introduction 

1.1 Background 
This bachelor’s thesis is part of the PhD project of Johanna Oeschger [1]. In her project, Johanna 
Oeschger aims to analyze the quality of conversations between English as a second language (ESL) 
students and a chatbot from a language learning point of view. An especially important feature when 
assessing the quality of conversations in an ESL context are negotiations of meaning. Such 
negotiations occur when a speaking partner does not understand the intent or meaning of an utterance 
in a conversation and asks for clarification. According to Long, negotiations of meaning support the 
acquisition of a foreign language, because they are a source of feedback for students, urge them to 
repair unintelligible input which in turn leads to more comprehensible utterances [2]. 

Johanna Oeschger created two text-based conversational roleplay tasks for ESL students. In the tasks, 
the students are asked to enquire about available internships or event rooms at a hotel, respectively. 
Both tasks defined two distinct roles: the role of the client and the role of the service provider. The 
tasks were administered and evaluated in an initial pilot study by Johanna Oeschger. The participants 
– second-year students of a commercial vocational school – were randomly assigned into 7 dyads, one 
student carrying out the role of the client, the other student the role of the service provider. The 
conversations were held by typing on an instant messaging platform on the students’ personal mobile 
devices. The test run resulted in seven recorded conversations per task. After an initial analysis of 
these 14 transcripts by Johanna Oeschger, where linguistic and other relevant interactional features 
were evaluated, it was decided to use the room reservation task (see appendix 11.1) and the 
corresponding collected data for this bachelor’s thesis. 

1.2 Problem statement 
Over the past few years, there has been considerable progress in the field of natural language 
processing (NLP). This has led to technologies using NLP at their core to become more accessible and 
widespread – with chatbots being one of these technologies. 

The use of chatbots in education is promising, because the technology offers a new and alternative 
opportunity for students to practice their conversational skills. Actively practicing a foreign language 
is crucial for becoming proficient at it. Thus, introducing a chatbot in an ESL setting could be 
beneficial. Previous studies have questioned the use of chatbots, stating that they are not a substantial 
learning instrument [3]. However, the chatbots applied in these studies were not restricted to a specific 
domain, nor have they made use of the latest advancements in the field of NLP. 

In this thesis we consider the recent advancements of NLP and restrict the domain of the chatbot to 
the room reservation task. Based on these considerations, we aim to answer the following research 
questions: 

• Does the chatbot understand the queries of ESL students and is it able to reply in a 
comprehensible manner? 

• Is it possible to formulate a meaningful clarification request to trigger a rephrase from the 
student, in case of a misunderstanding? 

• Is it possible to detect morphological, syntactical and semantical errors in the student’s 
language? 

• Do software development kits (SDKs), cloud solutions or software libraries exist to create a 
holistic solution in which the aforementioned language errors can be detected? 
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1.3 Objectives and scope 
The first of two main objectives is to implement a prototype of a domain-specific chatbot which is 
capable of conversing with ESL students. The chatbot should be a viable chatting partner in a written 
roleplay exercise used in ESL classrooms. Its role is to function as a service provider of a hotel 
answering inquiries about event rooms. While doing so, the chatbot should encourage negotiations of 
meaning in case of misunderstandings, which in turn should lead to more comprehensible student 
utterances. 

The second objective is to generate the necessary amount of data for Johanna Oeschger’s dissertation 
project. As part of her project, the chatbot will be applied in four different ESL classrooms of a 
commercial vocational school. The students will be interacting with the chatbot simultaneously. The 
chat logs will be complemented with a recording of the participants’ screens. Additionally, a student 
questionnaire will be administered before and after the chatbot interaction. So, each conversation 
between a student and the chatbot must be recorded, uniquely identifiable and exportable in order to 
match each participant’s conversation, screen recording and questionnaire. Neither the screen 
recordings nor the questionnaires are part of the scope. Using the exported transcripts of the 
conversations, Johanna Oeschger will analyze the interactions between students and the chatbot to 
answer her research questions. 

Because the exercise simulates a text-based chat conversation as opposed to a phone call, no speech-
to-text and text-to-speech components are required. 

To ensure that we are not restricted in logging conversations, identifying and giving feedback to a 
user, no integration into a messaging platform is considered. Instead, a custom client will be 
developed which is accessible via laptops and supports the latest browser versions. 

The features regarding logging, export, identifying a user and possible load tests are not part of the 
research questions, thus are not considered in the chapters Results and Conclusions. However, as 
mentioned earlier, they influence the Implementation. 

1.4 Outline 
This thesis is structured in a way that aides a continuous flow of reading and comprehension. First, the 
chapter Theory introduces the fundamental topics of chatbots and their means of understanding text 
and detecting errors in language. The following chapters will keep referring to the introduced terms 
and definitions. Chapter Analysis highlights aspects that need to be considered in order to achieve the 
stated objectives. In Evaluation the necessary services, frameworks and libraries that are to be used 
for the Implementation are evaluated. The final two chapters, Results and Conclusions, measure and 
reflect on the results of the implemented prototype. 
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2  Theory 

This chapter lays the theoretical foundation of our thesis by introducing the most important 
technological theories and definitions. Understanding the introduced technologies and terminologies 
is important to fully comprehend the reasoning behind the analysis, evaluation and implementation.  

To create a chatbot that can be applied in English classrooms, it is important to understand what the 
capabilities and limitations of chatbots are and how they function. The first subchapter introduces two 
common approaches of chatbots and shows how they are being applied in commercial and educational 
areas. 

The second subchapter introduces natural language processing (NLP) tasks that are relevant for text 
comprehension using a machine. Finally, important aspects for detecting errors in language are 
introduced. 

2.1  Chatbots 
A chatbot is a computer program designed to carry out conversations mainly with humans as their 
partners. The terms used to define such programs vary. They are also referred to as chatterbots, 
conversational agents or dialog systems. The following figure shows that chatbots are in fact 
understood as a subclass of dialog systems and conversational agents [4]. In this paper we will 
consistently refer to them as chatbots. 

  
Figure 1: Classification of dialog systems [4]. 

2.1.1 Rule-based approach 
The complexity of conversations a chatbot carries out depends on the domain and the tasks it has to 
fulfill. A rudimentary specimen might not focus on keeping a chatting partner interested and engaged 
in a conversation. Its sole purpose is to execute a specific algorithm and providing feedback after 
execution. Identifying which algorithm to invoke can be determined using simple pattern matching on 
a large set of predefined rules. In this case, if the received message does not exactly match a rule, no 
execution will take place, because the chatbot has no means to infer what rule should be applied. 

The first chatbot that has ever been released made use of a pattern matching technique. ELIZA, 
released by Joseph Weisenbaum in 1966 [5], simulated a psychotherapist. Its objective is to keep its 
human counterpart engaged. ELIZA applies multiple strategies to accomplish this goal [6, p. 19]. For 
example, ELIZA continues asking questions about the user and their emotional state, in order to keep 
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them do the talking. Oftentimes ELIZA’s question simply consists of a reflection of the user’s 
previous message, where it swaps pronouns like “my” to “your” or “me” to “you” [7, p. 184]. An 
example of a conversation is given in Figure 2. By echoing keywords or parts of the user’s speech and 
rephrasing them in the form of a question, it gives the impression that it is attentively listening. When 
the pattern matching algorithm is unable to apply a rule, it changes the topic or gives a neutral 
response. 

 
Figure 2: Example of a conversation between a user (U) and ELIZA (E) [7, p. 184]. 

This sole pattern matching approach has its downsides. ELIZA is not capable of remembering parts of 
the dialog and has no awareness of the conversational context. Its architecture does not contain a 
dialog manager, a component which keeps track of the state of the conversation (see chapter 2.1.5). 
This limits the chatbot to basic small talk. Nevertheless, ELIZA inspired a succeeding generation of 
chatbots building on top of pattern matching. 

AIML stands for Artificial Intelligence Markup Language. It is an open source XML-based standard 
that specifies how patterns and responses for chatbots can be created. This standard was introduced 
with the creation of Alice, a chatbot first released in 1995 by Richard Wallace [7]. Patterns defined in 
AIML allow keywords to be extracted and stored in variables. Thus, compared to ELIZA, Alice and 
other chatbots using AIML have the capability of remembering elements of a conversation. AIML 
patterns are processed by an interpreter and stored as a tree-shaped directed graph [7, p. 200]. 
Incoming messages are run through the pattern matching algorithm, which uses backtracking and 
depth-first search (DFS) to traverse the graph and to reply to the user [7, p. 201].  

While the introduction of AIML has improved the creation process as well as the quality of chatbots, 
it has major disadvantages. “First of all, being a rule based system, a big set of rules need to be built 
and so a big fraction of time is spent analyzing the possible variation of the sentences instead of 
leaving it for more important tasks such as focusing on the data available” [8, p. 22]. The pattern 
matching algorithm will look for a rule that exactly matches word for word. This leads to redundancy, 
as a rule must be defined for every synonym, spelling mistake and variation of sentence structure. 
Figure 3 highlights this issue. For every possible synonym of “Hello”, a rule has to be defined. 
Messages such as “Good morning” or “Hey” would otherwise not match.  

U: Well, my boyfriend made me come here. 
E: Your boyfriend made you come here. 
U: I am unhappy 
E: Do you think coming here will help you not to be unhappy? 
U: I need some help, that much seems certain. 
E: What would it mean to you if you got some help? 
U: Perhaps I could learn to get along with my mother. 
E: Tell me more about your family. 
U: You are like my father in some ways. 
E: What resemblance do you see? 
U: My father is afraid of everybody 
E: What else comes to mind when you think of your father? 
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Figure 3: AIML rules to respond to "Hello" highlighting the issue of redundancy [7, p. 195]. 

Figure 3 reveals another issue. Every synonym is referencing the original rule “Hello” by using the 
srai tag. This allows to reuse the text defined in the template tag of “Hello”. In the example above, 
this means that the chatbot replies with “Hi there!”. As the set of rules becomes larger and more 
complex, it gets more difficult to trace the list of applied rules on a message. 

Maintaining a set of rules, which in some cases reference each other, is not feasible as the set becomes 
larger. To eliminate the need for rules, a different approach can be taken. 

2.1.2 Machine learning approach 
As shown in the previous chapter, maintaining a set of patterns to decide how to respond to a message 
can be troublesome. When a user asks a question or provides information in form of a sentence, it is 
difficult to create rules that cover all possible variations of such an utterance. Trying to encompass 
them leads to even larger sets. Even worse, if no pattern exists, the chatbot will not respond as 
expected. This is especially problematic for goal-oriented chatbots. 

Compared to small talk chatbots, whose goal it is to keep a user engaged, goal-oriented chatbots serve 
a specific purpose. The domain of the conversation is therefore limited. A chatbot who schedules 
hotel room reservations, does not need to engage in chitchat. Its goal is to provide a service to the 
user. It needs to identify the intent of a user’s request in order to handle a related task. If it receives a 
message such as “I would like to reserve a deluxe room for the 28th of September.”, it should be able 
to classify the intent correctly. However, there are multiple ways to formulate such a request. 
Depending on the complexity of an intent, there a few to several thousand possible wordings [9, p. 8]. 
Covering them with rules is a difficult and tedious undertaking. With the help of machine learning, 
models can be trained to statistically infer what intent applies without the need to exactly match a set 
of rules. 

Statistically inferring which algorithm to execute demands a more sophisticated architecture. Such 
architectures usually make use of natural language processing (NLP) techniques and machine 
learning. NLP is a subfield of computer science devoted to analyzing and processing natural language 
to recognize, understand and generate texts. As we will see in chapter 2.2, where natural language 
understanding (NLU) is introduced, understanding received texts is of utmost importance when 
creating chatbots. NLU is not responsible for the generation of responses. To understand a received 
message, the text needs to go through a pipeline of processing tasks, where it is decomposed into 

<category> 
    <pattern>HELLO</pattern> 
    <template>Hi there!</template> 
</category> 
<category> 
    <pattern>HI</pattern> 
    <template><srai>HELLO</srai></template> 
</category> 
<category> 
    <pattern>HI THERE</pattern> 
    <template><srai>HELLO</srai></template> 
</category> 
<category> 
    <pattern>HOWDY</pattern> 
    <template><srai>HELLO</srai></template> 
</category> 
<category> 
    <pattern>HOLA</pattern> 
    <template><srai>HELLO</srai></template> 
</category> 
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parts. Once this step is completed, depending on the architecture, machine learning will be applied to 
classify the intent of the message and to extract important entities. The model of the classifier is 
trained on a set of predefined messages. Depending on the applied machine learning model, the 
chatbot can learn from new conversations and adjust its model. 

Learning can be achieved through supervision, where the supervisor enters a message yet unknown to 
the chatbot and corrects its classification if necessary [10, p. 5]. Another form of learning can be 
attained through reinforcement learning. In this case, there is no supervisor training or correcting the 
model. Instead, a reward function is used to optimize the model when selecting a proper response to a 
message [11]. 

As has been outlined, there are benefits in using machine learning to understand a user’s utterance. 
There are however also some challenges. In a journal article by Facebook AI Research, the authors 
point out that creating models for a specific domain requires a lot of handcrafting [12]. This problem 
was also highlighted in Martino Mensio’s master thesis, where he states: “The bot prototype required 
a domain specific training corpus to correctly categorize the intents of the user and to identify the 
entities involved with their role. No existing publicly available collections of annotated sentences 
existed for the bike sharing domain, so it has been required to personally collect it. Reaching good 
size and quality of collected data is not easy and some circular dependencies in the workflow can 
occur, […]” [8, p. 99]. So, it becomes clear that enough data for training and testing machine learning 
models needs to be available in order to create useful intent classifiers.  

Nevertheless, the most useful applications of dialog systems such as digital personal assistants or bots 
are currently goal-oriented and transactional [12] and they are increasingly being applied in 
commercial areas. 

2.1.3 Commercial application 
Chatbots are used in many different areas: commerce, banking, insurance and travel, to name a few. 
The list of companies covering existing services through chatbots is growing. There are multiple 
reasons for this. First, by virtue of cloud providers, it has become more accessible to create a chatbot. 
Instead of developing a chatbot from scratch, these providers hide the implementation details behind 
well documented SDKs and application interfaces (APIs). Second, there is no need for setting up a 
hosting infrastructure as this is taken care of by the cloud provider. Third, the chatbots can be 
seamlessly integrated into popular messaging platforms that their customers are already using. 
Finally, and most importantly, they can have a noticeable impact on saving time and costs, as pointed 
out in a report by Juniper Research [13]. 

As a consequence to the increasing use of chatbots, more people have been exposed to chatbots and 
their acceptance has grown. According to a study conducted by PIDAS and ZHAW [14], 70% of the 
questioned have interacted with chatbots or are willing to do so in the future. This is a 30% increase 
compared to the previous year’s study. Unsurprisingly, the acceptance rate is higher for the younger 
demographic (ages 18 to 30). 53% of them have already used chatbots in the past [14]. 

2.1.4  Application in education 
An effective way of learning a foreign language is through conversing with a native speaker. In 
foreign language classrooms, however, the teacher is often the only proficient conversation partner 
available to learners. Due to the student/teacher ratio, opportunities for one-to-one dialogs are rare in 
the language learning classroom. A chatbot could potentially be a useful alternative to provide 
additional speaking opportunities for students, due to its capability of holding multiple conversations 
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simultaneously and its availability. Thus, it is unsurprising that several attempts of applying chatbots 
in the educational realm have been made previously. 

Already in the early 2000s, several studies were conducted to examine the effects of chatbots in 
language classrooms. All these chatbots followed the rule-based approach (see chapter 2.1.1). The 
research team either used versions of Alice [15, p. 35], [16] or created their own chatbot building on 
similar principles of AIML [17, p. 183], [18]. This is not surprising due to AIML being state-of-the-
art and the lack of alternatives at the time. As a result, the chatbots were limited to chitchatting in an 
open-domain dialog on a finite set of rules. In the study of Shawar and Atwell [15, p. 38], the set was 
insufficient for the chatbot to generate satisfying responses related to a mentioned topic. Jia [19, p. 6] 
discovered similar shortcomings and ascribed them to the rule-based pattern matching approach. 
“Developing open-domain conversational dialogue systems is difficult, since the huge variety of user 
utterances makes it harder to build knowledge resources for generating appropriate system responses” 
[20, p. 334]. Another issue was the chatbot’s inability to make use of linguistic knowledge because, 
unlike machine learning-based chatbots (see chapter 2.1.2), it had no awareness of the conversational 
history [15, p. 38].  

No studies were conducted in recent years evaluating the impact of machine learning-based chatbots 
in the field of education. Even a recent book evaluates exclusively AIML-based systems [21]. Studies 
devoted to the novelty effects of chatbots in a language course [3], [22, p. 463] used Cleverbot, which 
does not apply a machine learning model yet [23] and is not restricted to a specific domain. 

2.1.5  Architecture 
A generic architecture of a modern machine learning-based chatbot consists of an NLU, a dialog 
manager and a response generator. The responsibility of the NLU is to map spoken or written 
language to intents and entities. Chapter 2.2 will elaborate further on NLU. The dialog manager tracks 
the context of the conversation. A response is composed by the response generator, a natural language 
generation (NLG) component, using the current state of the dialog manager. Figure 4 shows how 
these components interact with each other. 

  
Figure 4: A generic machine learning-based chatbot architecture. 

The dialog manager tracks the conversation by remembering its central aspects. Simple architectures 
could simply record the extracted entities. More advanced dialog managers however retain the history 
of uttered intents and responses as well. These aspects are stored and referred to as the context. Using 
the context, the dialog manager steers the conversational flow [24, p. 795] by telling the response 
generator how to respond. Depending on the architecture of a response generator, it may pick from a 
set of templates or generate the language completely by itself. The templates may contain 
placeholders, which can be filled with data stored in the context. The template-based approach is the 
most common strategy. For example, Pandorabots’ Artificial Intelligence Markup Language (AIML) 
makes use of it [25], [26, pp. 124–131]. Dynamically generated responses on the other hand can be 

Message NLU

Response 
generator

Dialog manager Context

Intent

Entities

Response

External service
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achieved with neural networks [27], [28], [29, pp. 87–95]. However, this strategy is rarely used in 
chatbots and is more commonly applied in areas where reports, documentations or summaries are 
generated [30]. 

Without a dialog manager, multi-turn dialogs would not be possible. A multi-turn dialog is a sequence 
of request/response cycles, where the chatting partners keep referring to entities that were mentioned 
previously in the dialog. These mentioned entities can be retrieved from the context and used in 
responses. In this way, a chatbot may for example mention the user’s name at the very end of a 
transaction by uttering “Thank you for your order, Marc”, even if the user has stated his name at the 
very beginning of the conversation. The dialog manager also allows the chatbot to successfully react 
to utterances such as “I will order the other one instead”, because it retained the alternative object 
mentioned in the previous turns of the conversation [24, p. 795]. 

The dialog manager also enables users to converse in a non-linear fashion. In linear dialogs, every 
conversation follows the same sequence, whereas non-linear conversations branch off at different 
moments, allowing users to obtain the same information in various ways. Non-linearity is an 
important property of chatbot conversations, because it makes them feel more natural to users. 

Besides accessing the context to retrieve information, external services can be queried to answer 
questions or to complete transactions. These services usually provide application programming 
interfaces (APIs). This procedure enables chatbots to provide Q&A features, where the bot searches a 
knowledge base before answering [31], or to complete tasks such as booking a flight or finding a 
rental bike nearby [8]. 

2.2  Natural language understanding 
Since the early days of computing, humans have relied on special input devices to interact with 
computers. As time goes by, so do input devices, as illustrated by the transition from punch cards to 
modern touchscreen devices, for instance. Natural language understanding, a subfield of natural 
language processing, is intended to use naturally spoken and written language as input for a computer 
program. 

There is no definitive architecture for an NLU. Based on the intended use case, different components 
are combined to master a specific task. For this reason, we detail common NLP components instead of 
a complete architecture. A specific NLU architecture is described in chapter 5.3. 

A tokenizer is applied at an early stage in the NLU pipeline. It splits sentences, words or characters 
into tokens. Simple rule sets split by whitespace and punctuation characters, whereas sophisticated 
rulesets consider floating point numbers (0.12), abbreviations (e.g.) or dates (12.11.2018) as one token 
[32]. 

Tokens can be assigned a word type (noun, verb, etc.) by using a part-of-speech (POS) tagger. More 
fine-grained approaches distinguish the tense of a verb, the noun number (singular or plural) and the 
different forms of adjectives (adverb, comparative, superlative, etc.). Hence, different POS tag 
conventions exist. Smaller sets such as the Universal POS Tagset [33] contain 12 tags, whereas the 
Brown Corpus includes 85 defined tags [34]. An example of tagged words can be seen in Figure 5, 
where the word type is indicated below the corresponding word. 
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Dependency parsing extends POS tags with syntactic labels, which describe the dependencies 
between the tokens. Modern greedy, transition-based dependency parsers incorporate neural network 
classifiers to achieve a balance of speed and accuracy [35]. Figure 5 shows the dependencies between 
the words as arrows with their corresponding labels. 

 
Figure 5: Example sentence parsed with spaCy, a popular NLP library. 

Lemmatization is an NLP task that considers the morphology of words. Morphology studies how 
words are formed from its parts (e.g. word stems, prefixes, suffixes). In the process of lemmatizing, 
each word is reduced to the lemma, the dictionary or root form. To identify the root form, a language-
specific vocabulary and morphological analysis is conducted. A simpler form is stemming, a heuristic-
based approach, which tries to form the root by removing the word ending [36, p. 30]. Both of them 
are widely used in text mining, summarization or analysis to limit the variation of word forms and to 
make them more consistent [37]. Table 1 shows an example of how lemmatization works. 

Original the boy’s cars are different colors 

Lemmatized The boy car be differ Color 

Table 1: Lemmatization example sentence [36, p. 30]. 

The named entity recognition (NER) component identifies real world objects in tokens. Recognized 
objects typically include people (PERSON), organizations (ORG), countries (GPE), dates (DATE, 
TIME) or amounts of something (MONEY, CARDINAL).  

 
Figure 6: Example dialog after spaCy tagged the recognized entities [38]. 

The majority of NER implementations use supervised machine learning. The accuracy of these 
systems heavily depend on the labeled data, also known as a corpus [39, p. 7]. 

Word embeddings attempt to represent language in a numerical form. Simple embeddings have a 
finite vocabulary as a one-dimensional vector and each column represents a single word. A more 
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DET VERB DET NOUN
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complex example is the pre-trained model GloVe [40] with 50 to 300 dimensional vectors available 
per embedded word. Mikolov et al. showed the interesting phenomenon of similarity (e.g. boat – ship) 
and relatedness (e.g. boat – water) of words in a vector space [41, p. 5]. 

The intent classifier is an essential component of chatbot and voice assistant applications. It maps 
different wordings of a request to a common intent. This reduces the types of requests to a finite set of 
intents the application supports. 

2.3  Language error detection 
As Coniam concluded in his study [42], all of the evaluated chatbots are not yet suitable for a 
conversational ESL setting. Vocabulary or grammatical errors in the learners’ language confuse the 
chatbots and halt the conversation. At the same time, Jia [17, p. 188] noted that the conversation 
partners tend to focus on the flow rather than following grammar and spelling rules. These two facts 
combined present a challenge to the development of a chatbot for an ESL setting: While the chatbot 
relies on correct language input, learners tend to disregard language rules when communicating with 
chatbots. 

According to Lyster and Ranta [43, p. 56], feedback that is provided in the form of explicit 
corrections is the least effective. This is because the language learner is not actively confronted with 
their error and tends to simply accept the teacher’s rephrasing. One goal of our chatbot is to detect and 
inform the students of language errors and try to encourage them to correct or rephrase the message, 
rather than simply marking the error or providing a corrected version. To keep the conversational flow 
the learner should however not be prompted for every mistake. 

The types of errors that might occur in the chatbot conversations are partly depending on the ESL 
students’ first language. Students with German as their first language, for instance, already know a 
rule set for articles and might make mistakes by applying the same rules to English (e.g. “My sister is 
doctor.”), but still perform better than Russian native speakers who do not have articles in their first 
language [44, p. 45]. In the Cambridge Learners Corpus First Certificate in English (CLC FCE) 
dataset, 2488 essays written by learners from 16 different language backgrounds were corrected and 
annotated. In an analysis of the CLC FCE dataset by Leacock et al. [45] spelling was the most 
common type of error, followed by word choice, preposition and determiner errors. 

Spellchecking is available in most word processors, messaging applications and web browsers. Most 
implementations are not context-aware and use the Levenshtein distance to measure the similarity 
between words. This can lead to false positives, as seen in Table 2. 

Original In the room for 200 people you habe round tables for 6-8 peoples with chears. […] 

Corrected In the room for 200 people you have round tables for 6-8 peoples with cheers. […] 

Table 2: Example of a false positive correction of a spellchecker. Chairs is the correct substitution. 

In a context-aware spellchecker, chairs would have a higher precedence because it is more common 
in a sentence with tables. 

Error detection and correction is a popular shared task, such as CoNLL [46], [47] and HOO [48], [49]. 
The introduction of the CoNLL shared tasks states: “This task is challenging since for many error 
types, current grammatical error correction systems do not achieve high performance and much 
research is still needed.” The submitted papers provide a wide range of solutions to the problem. 
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3 Analysis 

Previous chapters have laid the theoretical foundation and established a shared understanding of the 
key definitions. The goal of the present chapter is to analyze the problem domain and derive the 
capabilities of the prototype to be developed. These capabilities must satisfy the objectives described 
in the problem statement (see chapter 1.2). 

First, the problem domain is analyzed by highlighting the most important aspects of it. Understanding 
the problem domain is necessary to derive requirements for the chatbot and the language error 
detection. The capabilities of these modules are analyzed separately in their respective subchapters. 

The data used for the analysis stems from the room reservation task of the pilot run (see chapter 1.1). 

3.1  Problem domain 
The software system’s target audience are commercial trainees who are undertaking their basic 
vocational training at commercial vocational schools in Switzerland. In the German-speaking part of 
Switzerland, these schools are known as Kaufmännische Berufsfachschulen. Basic vocational training 
programs are generally taken up by young people after graduating from secondary school. Completing 
secondary school in Switzerland is usually achieved after 9–12 years of formal education. Thus, a 
student of a vocational school is typically around 16–18 years old. Their acceptance rate for using 
chatbots is assumed to be higher than in other age groups (see chapter 2.1.3). The students are not 
English native speakers, thus are categorized as ESL students. For their basic vocational training 
programs, commercial vocational schools target the language proficiency levels B1 Intermediate 
according to the Common European Framework of Reference for Languages [50, p. 1]. 

In an ESL classroom, students tend to have a limited vocabulary and commit more grammatical errors 
than native speakers. They also tend to compensate their lack of vocabulary by using words from their 
native language vocabulary. Both aspects are highlighted in Figure 7. 

 
Figure 7: Chat dialog from the room reservation exercise of two ESL students highlighting language errors.  

This is an excerpt of a conversation that was held during the test run between two ESL students who 
were roleplaying a room reservation scenario. Besides the lack of vocabulary, determiners and 
preposition mistakes are the most common errors of English learners [46, p. 1]. 

3.2 Chatbot capabilities 
In the seven logged conversations of the room reservation exercise (see chapter 1.1), a mean of 39 
messages were sent and 12.9 turns were taken. A turn is a single request/response cycle between the 
chatting partners. Per turn a mean of three messages were sent. The mean duration of a conversation 
was 21.5 minutes. In total 273 messages were sent. 

When analyzing the interactions in these conversations, we identified 29 different types of intents, 
with each uttered intent containing one or multiple entities. In fact, we further noted that the students 
used up to nine different entities within intents. As a consequence, the chatbot would not only need to 

S:  i have to organisate a room for our companie 
S:  and i read about your rooms 
S:  can i have some informations about? 
H:  Sure!  
H:  We hav three rooms for you Event. Room A is for 270 people, With 
    ha big stage and a fix delivery. The technical (ausstatung) are 
    modern with eh big with wand 
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be able to respond to a specific intent but do so in varied ways, depending on the used entities. Table 
3 shows a reduced list of intents that were derived from the room reservation exercise pilot run. A 
complete list can be found in the appendix (see chapter 11.1). 

Intent Examples 

affirm Yes | Yes, please | That is correct 

ask_for_options What rooms do you have? | Do you have meeting rooms? 

ask_for_room Tell me about room Alpha | What about the others? | What 
about Alpha? 

ask_for_room_equipment Is it possible to show a presentation in Gamma? 

greet Hi there! | Hey, how are you? | Hello 

greet+ask_for_options Hello. What rooms do you have? 

reserve_room I want to reserve room Beta | I want to book this room 

Table 3: A reduced list of intents derived from the room reservation exercise of the pilot run. 

The following table shows a reduced list of entities that are used within the intents. A full list is in the 
appendix (see chapter 11.3). 

Entity Examples 

budget 1’500.- | 1200 | CHF 1500 | 1600 | $1200 

date 25.04.2019 | 24th of May | 1st December 2019  

name Yves | Max Muster | Mr. Muster 

nr_of_people 150 

room Alpha | Beta | Gamma 

Table 4: A reduced list of entities derived from the room reservation exercise from the pilot run. 

Additionally, it was determined that the chatbot must support multi-turn dialog structures. It is 
essential in a conversation to know what subject or object the conversational partner is currently 
referring to. If these properties can be inferred from context, the conversational flow becomes more 
natural. In Figure 8 both students refer to “Room A” without explicitly mentioning it. Using the term 
“other rooms” only works if both parties know which specific room they are currently talking about.  

 
Figure 8: Chat dialog of two ESL students referring to an already uttered word in room reservation exercise. 

Another important aspect concerns the user language. A study found that rule-based chatbots 
experience difficulties if words are misspelt [42, p. 105] or in an incorrect order [42, p. 109]. Rule-

H: Room A is for 270 people, With ha big stage and a fix delivery. 
   The technical (ausstatung) are modern with eh big with wand. 
H: The price for this room is 1400.- 
S: Does it have a projector to present the staff a presentation? 
H: Yes! 
S: ohh cool 
S: are the other rooms cheaper?  bigger or smaller? 
H: Room B is 900.- for 130 people inside and ouside +60 peple 
H: Room C is 1100.- for 200 people 
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based chatbots need to incorporate these mistakes into their rule sets in order to understand a user’s 
message. It is however difficult to capture all of these errors using pattern matching. For our domain 
this is problematic, because ESL students do in fact tend to commit these types of errors, as seen in 
Figure 9. According to the same study [42, p. 109], a chatbot needs to handle these kinds of errors in 
order to be useful to ESL students. As noted in chapter 2.1.2, machine learning models use 
probabilities to classify the intent of a received text. Therefore, erroneous text input is less likely to be 
misunderstood, as long as there are other significant features. Furthermore, some utterances depicted 
in Figure 9 contain multiple clauses, which makes pattern matching even more complicated [42, p. 
111]. For these reasons, solely a machine learning-based approach is considered in this thesis. 

 
Figure 9: Examples from the room reservation exercise of users asking for room equipment. 

3.3 Language errors 
The issue of the language errors ESL students commit was introduced in chapter 2.3. In this chapter, 
the committed mistakes from the pilot run and the first usability tests of the chatbot are analyzed. 
When the first usability tests were carried out, the chatbot did not yet contain a language error 
detection module. All utterances of users who carried out the client role (see chapter 1.1) were 
considered. The found errors were classified by type. The error typology was taken from the CoNLL-
2014 Shared Task on Grammatical Error Correction [47, p. 3]. Table 5 lists the resulting subset of 
error types. Punctuation and capitalization were disregarded for the type Mec, as a lack of correct 
punctuation and capitalization are common practice for the chatting environment. Filler words such as 
“ah”, “ehm” and “uhm”, also known as hesitation words, were ignored as well. People’s names were 
substituted with the word “unknown”. 

Type Description Example 

Mec 
Spelling (ignoring 
punctuation and 
capitalization) 

This knowledge [maybe relavant → may be relevant] to 
them. 

Vm Verb modal Although the problem [would → may] not be serious, 
people [would → might] still be afraid. 

V0 Missing verb However, there are also a great number of people [who → 
who are] against this technology. 

Nn Noun number A carrier may consider not having any [child → children] 
after getting married 

ArtOrDet Article or determiner It is obvious to see that [internet → the internet] saves 
people time and also connects people globally. 

Pform Pronoun form A couple should run a few tests to see if [their → they] 
have any genetic diseases beforehand. 

Prep Preposition This essay will [discuss about → discuss] whether a 
carrier should tell his relatives or not. 

S1: but can we use there in room c the audio and visual functions 
S2: Does it have a projector to present the staff a presentation? 
S3: ehm 150 persons and ih need e room who i can show a presentation and i can make 
    littel groups for speek 
S4: That‘s great, we should be able to do some things in one of these room, to present 
    our presentations, disscus in small teams, good atmospher, and the guests should 
    feel impressed but not with extreme things, we have maximum CHF 1500 to pay 
S5: We need in the room something to show a presentation. But also we need to can make 
    little groups. Have one of this room a good athmosphere? We try to impress our 
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SVA Subject-verb agreement The benefits of disclosing genetic risk information 
[outweighs → outweigh] the costs. 

Vform Verb form A study in 2010 [shown → showed] that patients recover 
faster when surrounded by family members. 

Vt Verb tense Medical technology during that time [is → was] not 
advanced enough to cure him. 

WOinc Incorrect word order [Someone having what kind of disease → What kind of 
disease someone has] is a matter of their own privacy. 

Wci Wrong collocation/idiom Early examination is [healthy → advisable] and will cast 
away unwanted doubts. 

Wform Word form The sense of [guilty → guilt] can be more than expected. 

Rloc Redundancy It is up to the [patient’s own choice → patient] to 
disclose information. 

Table 5: Subset of error types from the CoNLL-2014 Shared Task on Grammatical Error Correction [47, p. 3]. 

Out of 240 messages, 41.7% of them contained errors. These 100 messages had a total of 203 errors. 
Most mistakes (85.7%) were committed in the pilot run. This is likely to be attributed to the testing 
environment, where students were chatting on mobile devices with each other. Nevertheless, as 
depicted in Figure 10, spelling errors were the most common errors in both testing environments. 
They made up 45.4% of errors in the pilot run and 34.5% in the usability tests. This clear margin 
indicates that the error detection module of the chatbot should contain a spellchecker.  

 
Figure 10: Comparison of language errors in testing environment (normalized). 

This high percentage of spelling errors is a potential problem for the chatbot’s intent classifier. 
Depending on the architecture, a machine learning-based classifier could still correctly classify the 
user’s intent if the text contains some misspelled words. For example, by using the remaining 
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correctly spelled words, a bag-of-words model would still have a high enough frequency to ascribe 
them to an intent. A rule-based approach could overcome this challenge by including common errors 
into the set of rules. This however does not cover all possible errors and would complicate the set of 
rules even more. 

The analysis also shows that some students repeatedly made the same errors. This happens if students 
are unaware of their mistakes. Introducing a language error detection module could provide helpful 
feedback to students, diminishing the chance of repeating the same errors. A chatbot could mimic the 
role of a teacher by highlighting grammatical errors to its conversation partner. In Jia and Chen, a 
chatbot equipped with a grammar checker was not as frequently used as the one without [17, p. 188]. 
This comes as no surprise as being corrected after each turn might be considered unbearable by the 
student. Therefore, language correction should be carefully applied to keep the student engaged and 
motivated for the conversation. 
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4 Evaluation 

The previous chapter outlined what essential aspects a chatbot and a language error detection module 
must cover. These aspects are evaluated in this chapter. Firstly, chatbot services and frameworks are 
analyzed. The evaluation focuses solely on NLU components, testing the intent and entity recognition 
capabilities. Rule-based chatbots are not considered for the reasons stated in chapter 3.2. Furthermore, 
since the previous chapter revealed that misspellings are the most common language errors committed 
by students, publicly available spellcheckers capable of detecting these errors are evaluated. 

4.1  Chatbot services and frameworks 
As stated previously (see chapter 3.2), chatbots need to be able to correctly classify intents and its 
entities. Dialog managers must support multi-turn conversations. 

Three offerings were considered for evaluation. Google Dialogflow [51] and Microsoft LUIS [52] are 
both cloud services and therefore do not require any self-hosted infrastructure or installation. They 
lack however the possibility to inspect or adapt the source code. Dialogflow contains an NLU and a 
dialog manager. LUIS is simply an NLU, thus does not contain a dialog manager. However, Microsoft 
offers Azure Bot Service [53] where a dialog manager can be developed using an SDK. The third 
offering we considered for evaluation is Rasa [54], a popular open source project, which offers an 
NLU pipeline and a dialog manager named Rasa Core. Rasa NLU has a configurable Tensorflow 
pipeline that allows developers to customize the model parameters for a given domain. The evaluation 
only covers the mentioned NLUs. 

All dialog managers listed above support non-linear multi-turn dialogs (see chapter 2.1.5) in various 
ways. In Rasa Core and Dialogflow these dialog managers follow a machine learning-based approach 
and have to be trained. Using the SDK provided by Microsoft Azure Bot Service, multi-turn dialog 
support has to be manually developed. 

The corpus used for evaluating the NLUs consisted of 400 generated queries containing five intents 
and four different entities. The procedure used to generate the data is discussed in chapter 5.6. The set 
of intents represent a basic and shortened conversation from the room reservation exercise (see 
chapter 1.1). Table 6 lists the evaluated intents. Each NLU is trained with 300 queries and the other 
100 queries are used for the evaluation. 

A recent evaluation by the TU Munich [55, p. 6] concluded that there is no absolute NLU and that the 
performance depends on the used corpus. Because the authors shared the automated evaluation scripts 
online, we have been able to evaluate the services with data from our evaluation corpus. 

Intent Entity Number of training / 
testing queries 

greet Name, Company 60 / 20 

provide_name Name, Company 60 / 20 

ask_for_room Number of people 60 / 20 

provide_nr_of_people Number of people 60 / 20 

Reserve_room Room 60 / 20 

Total  300 / 100 

Table 6: Intents and entities in evaluation corpus. 
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The results of the evaluation are depicted in Figure 11. The used F1 score is a standard measure in 
classification tasks [56]. LUIS and Rasa NLU both classified all intents and entities successfully. 
Dialogflow had issues with similar looking queries. For example, it classified “Good morning, my 
name is Mark Muller. I am in an internship at ABCD Corp” as an Introduction instead of a Greeting. 
Furthermore, it returned empty entities for certain queries. Unfortunately, Dialogflow does not 
provide confidence scores for its intents, which prevents a more detailed error analysis. Because of the 
test results and the limited troubleshooting capabilities, we decided against Google’s Dialogflow. 

 
Figure 11: NLU evaluation results (F1 score). 

As LUIS and Rasa NLU performed equally well, we considered additional criteria for the evaluation, 
which can be seen in Table 7. 

Criteria LUIS Rasa NLU 

Source availability Closed Source Open Source 

Cost None (within limits) Hosting cost 

Rate limit 5 transactions per 
second No limit 

Data processing location USA/EU CH 

Installation None Needs installation 

Customize pipeline Not possible Possible 

Multiple models Yes Yes 

Web GUI Yes Third party project 

Table 7: Additional criteria for the NLU evaluation. 

An open source project has major advantages compared to closed source software. Even though time 
has to be invested in setting up environments, the possibility of inspecting, troubleshooting and 
customizing the pipelines favors an open source approach. For these reasons, we decided against 
Microsoft LUIS and selected Rasa’s NLU and dialog manager for this project. 
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4.2 Spellcheckers 
The error analysis in chapter 3.3 indicated that a spellchecker pointing out language mistakes to the 
students would be a helpful addition to the chatbot. As mentioned in chapter 2.3, automatically 
correcting a mistake might however not be the most effective measure for the student’s learning 
process. Rather, the student should be encouraged to rephrase their erroneous statements, after having 
been made aware of them. In other words, the chatbot should detect an error but not correct it. 
Following this argumentation, our evaluation of spellcheckers did not consider the spellcheckers’ 
suggestions for word corrections. Likewise, the evaluation did not account for available Grammatical 
Error Correction (GEC) systems [57]–[59], as these systems provide the corrected version of an 
erroneous sentence without knowing what types of errors have been detected. 

We evaluate the following open source spellcheckers: Hunspell [60], SymSpell [61] and 
LanguageTool [62]. Hunspell and SymSpell are single word spellcheckers and hence have no 
awareness of the context in which a word is used. LanguageTool is configured to use their provided 
Google Books n-gram language model [63], enabling it to find contextual errors. Compared to the 
other spellcheckers, LanguageTool’s rich set of rules allows it to find other types of errors as well. For 
an unbiased evaluation, only misspellings are considered. 

As a basis for the evaluation, the same data and definitions from the language errors analysis are used 
(see chapter 3.3). The data was enhanced by labeling the word positions where spelling errors are 
expected to occur. Additionally, a frequency lookup table was generated containing keywords used in 
the context of the room reservation exercise. The purpose of the lookup table is to increase the 
accuracy by introducing context to context-unaware spellcheckers such as Hunspell. Using the table, 
these spellcheckers should be able to detect contextual errors such as “witch → which” or “tablet → 
tables” given that neither “witch” nor “tablet” are referenced in the lookup table. Even though both 
are correct English words, they are deemed incorrect in this context, because the intended word was 
inadvertently misspelled as a homonym. The code for the evaluation can be found in the GitHub 
repository [64]. 

Table 8 lists the calculated scores of the spellchecker evaluation script. When detecting errors, it is 
important to obtain a low number of false positives (FP). FPs indicate that the spellchecker incorrectly 
detects an error. Since missing errors is more preferable to the user than raising false alarms, the 
precision and F0.5 scores are the most important metrics, as they favor lower FPs [56, p. 3]. 

Spellchecker / Score Accuracy Recall Precision F1 F0.5 

Hunspell 0.98 0.83 0.99 0.90 0.95 

Hunspell + Context 0.98 0.88 0.96 0.92 0.94 

SymSpell 0.97 0.86 0.86 0.87 0.87 

LanguageTool* 0.98 0.83 0.99 0.90 0.95 

Table 8: Scores of the spellchecker evaluation. * indicates that some misspellings were classified as other types, 
which lead to incorrect false negatives. They were manually corrected. 

The results show that integrating a context-aware lookup table increases the recall while decreasing 
precision. This leads to a lower F0.5 score. It does not improve accuracy either. Hence, the integration 
of the lookup table can be omitted. SymSpell and the context-aware Hunspell detect more 
misspellings (higher recall) but produce more FPs (lower precision). LanguageTool and Hunspell 
perform the best, as their precision and F0.5 scores indicate. Either one of them would make a good 
choice for detecting spelling mistakes. However, the prospect of identifying additional error types 
favors LanguageTool. 
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5 Implementation 

Previous chapters laid the foundation for the implementation. The analysis highlighted important 
aspects of the problem domain and capabilities of the chatbot. A defined set of frameworks and tools 
were evaluated for the implementation. This chapter details how these components work and are put 
together to form a functioning chatbot. 

First, a brief overview of the architecture is given. The following subchapters explain the components 
in more detail. The final subchapter explains how the necessary data was generated for the machine 
learning-based components. 

The code of the implementation is located on the publicly available GitHub repository [64]. 

5.1 Overview 
The user interacts with the chatbot using the client, a web application served by the nginx server. The 
chatbot consists of six services. Each service is provided via a Docker container. Figure 12 depicts the 
services and how they interact with each other. Boxes in bold represent Docker containers. Messages 
from the client are sent as events to the chatbot using Socket.IO. The nginx server redirects incoming 
and outgoing events via a reverse proxy. It is the only exposed service of the chatbot. The 
conversational logger persistently stores the conversations and provides an export for the transcripts. 

 
Figure 12: Overview of the chatbot architecture. The bold boxes represent Docker containers. 
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5.2 Client 
The client is single-page application (SPA) built on top of React, a popular JavaScript library for 
building user interfaces. Using React, the entire user interface is composed of separate components. 
The communication between the components strictly follows the principle of unidirectional data flow 
described by the Flux architecture. This principle is realized using the library Redux. In Redux the 
entire application state is stored in a global store. Changes to the store are dispatched via actions. 
Actions can be dispatched by components or incoming events from external services. Reducers 
intercept the incoming actions and map their changes to the state inside the store. Changes to the store 
lead to partial redraws of components, if they subscribed to the store. Figure 13 depicts the described 
flow.  

 
Figure 13: Unidirectional data flow within the client. 

As mentioned earlier, the client communicates with the chatbot in form of events. These events are 
sent via Socket.IO and contain a payload in form of JSON. The table below lists all the events 
exchanged between the two parties. 

Event Description 

connect Creates a connection between client and chatbot. 

user_uttered A message written by the user. It contains the text, a unique id and the 
participant id. 

bot_uttered A message generated by the chatbot. It contains the text and a unique id. 

bot_found_errors A list of language errors the chatbot found analyzing a message of a user. 

disconnect Closes the connection between client and chatbot. 

Table 9: A list of events sent between client and chatbot. 

Composed messages of the user and incoming messages from the chatbot are stored inside the store. If 
the client receives a bot_found_errors event, the list of errors will be appended to the existing 
message in the store, which leads to a redraw of that message. 

Before users start interacting with the chatbot, they need to be authenticated. Authentication is done 
by entering a unique participant id. The entered code is compared to statically deposited list in the 
client. No stringent security measures are necessary. 
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5.3 NLU architecture 
Rasa NLU offers a set of 20 components. These can be combined to an NLU pipeline. Furthermore, it 
provides an API to build custom components. Each component declares what kind of data it requires 
and provides. We are using a customized version of the Rasa NLU Tensorflow pipeline. The 
developers of Rasa recommend this approach for our use case [65]. Figure 14 depicts the data flow of 
the customized pipeline. 

 
Figure 14: Visualized data flow between NLU components in the pipeline. 

The intent classification is implemented with Tensorflow embeddings, which are trained on a one-hot 
encoded vector (text features) consisting of the domain vocabulary and the results of supplied regular 
expression patterns. To generate this domain vocabulary, CountVectorizer of sklearn is used. This is a 
one-dimensional vector representing every word seen in the training data. 

These text features are the input layer for an adapted StarSpace [66] neural embedding model with 
two additional hidden layers (256 and 128 neurons) and an embedding layer with 20 neurons. The 
output are one of 29 intents. If the input consists of mostly out-of-vocabulary (OOV) tokens, the 
classifier falls below a configured threshold. This results in an undefined intent which our custom 
None intent classifier tries to label based on the entities found. This improves the detection of user 
messages containing only names or booking dates. 

For Named entity recognition, the pipeline performs a tokenization of the message with a simple 
whitespace ruleset. A probabilistic model called conditional random field (CRF) [67] is trained with 
various subsequences of our labeled data. It calculates the probability of the entity name given the 
sequence “I am”, which, in this example, is very high. A list of all featured entities is provided in the 
appendix (see chapter 11.3). Synonyms is a standard component to condense multiple found entity 
values into one. We do not use this capability.  

The response that the NLU returns is a structured representation of the user message. An example of it 
is depicted in Figure 15. It consists of the top-ranking intent, the detected entities, the full intent 
ranking of all intents with a confidence above zero and the original supplied text. 
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Figure 15: An abridged response object of Rasa NLU. 

5.4 Dialog manager architecture 
The dialog manager of the chatbot uses Rasa Core. The interacting components of the dialog manager 
are depicted in Figure 16. 

 
Figure 16: Visualized data flow between Rasa Core components. 

The interpreter processes the incoming Socket.IO channel messages and connects the dialog manager 
to the NLU.  

The tracker component, as the name indicates, keeps track of the state of every user. The state 
includes user messages, executed actions of the bot, and slot values. 

Actions are tasks that a bot runs in response to a user message. There are three types of actions. 
Listening for a user message or running a fallback option, if the bot does not have high enough 
confidence, are referred to as default actions. Utter actions allow the bot to send messages to the user. 
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{ 
    "intent": { 
        "name": "greet+provide_name", 
        "confidence": 0.9047530889511108 
    }, 
    "entities": [ 
        { 
            "start": 12, 
            "end": 17, 
            "value": "David", 
            "entity": "name", 
            "confidence": 0.9912837177405575, 
            "extractor": "ner_crf" 
        } 
    ], 
    "intent_ranking": [ 
        { 
            "name": "greet+provide_name", 
            "confidence": 0.9047530889511108 
        }, 
        { 
            "name": "provide_name", 
            "confidence": 0.2864721417427063 
        },... 
    ], 
    "text": "Hello, I am David" 
} 
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Custom actions can be used to query an API or change the state of the tracker. These custom actions 
run on a separate Action server component. We use these custom actions to fill slots in the tracker 
component. A complete list of actions is provided in the appendix (see chapter 11.5). 

Slots are the long-term memory of the chatbot. Slots can be filled and are exposed as simple key-
value pairs. They are important for multi-turn conversations and play a key role in the prediction of 
the next action, as will be demonstrated later. Each mentioned entity is automatically stored in a slot. 
However, for the entities budget and nr_of_people categories representing ranges are stored in one-
hot encoded form, instead of their raw integer value (see chapter 11.3). This optimization leads to 
better predictions. Additionally, we use two custom slots current_room and topic to retain what the 
user is currently talking about. The slots are filled by custom actions which are invoked on certain 
intents. Setting these slots allows the bot to respond to messages such as “what about the others?”, 
even when no explicit mention of the topic and rooms in question are present. 

In order to select the appropriate action to a user message the chatbot needs a brain. This is 
encapsulated in the policy ensemble, a stack of policies. A policy decides what the next action should 
be, based on the input and its implementation. Our stack of policies consists of the Keras policy, 
Memorization policy and Fallback policy. 

Figure 17 is a simplified representation of what the Keras policy model takes as input and produces as 
output. Max history h is a configured numerical value, which states how much of the conversational 
history should be considered for the prediction. Pi is a row vector and is created after receiving a user 
message. P0 represents the most recent message. Its features are made up of the predicted intent and 
entities of the NLU, the previous action it executed and the current state of the slots. The features are 
all one-hot encoded, resulting in 141 features. A complete list of intents, entities, actions and slots are 
provided in the appendix (see chapter 11). The Keras policy uses the P0 vector, which represents the 
most recent state of the conversation, and takes the previous h-1 vectors it constructed to create the 
input matrix I for the model. 

 
Figure 17: Simplified representation of the input and output the model of the Keras Policy.  
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The policy uses a long short-term memory (LSTM) based recurrent neural network (RNN) 
implemented in Keras. This type of neural network allows the eight pervious messages (matrix I) to 
influence the current prediction [68, p. 164]. Comparatively, the convolutional neural network (CNN) 
in the NLU component predicts the intent solely on the most current message. 

The prediction is an output vector O, which contains the confidence scores for 74 possible actions. 
The action with the highest score is considered as the next action. 

Next in the stack is the Memorization Policy. During training it generates a hashed lookup table of the 
same input matrices as the Keras Policy. If it encounters the same hash, the prediction of the Keras 
Policy will be overwritten with a confidence score of 100%. 

If the policies above have confidence scores lower than a configured threshold of 40%, the Fallback 
Policy will utter a fallback message prompting to rephrase the previous statement. Otherwise, the 
NLG simply selects a matching utterance out of a list of templates. The occurring placeholders are 
replaced with their slot values and the message is sent to the user. 

5.5 Language error detection 
The evaluation of spellcheckers (see chapter 4.2) showed that the spellchecking capabilities of 
LanguageTool were on par with Hunspell. Since LanguageTool can detect other error types as well, 
we decided to use it for our prototype. 

Per default, LanguageTool parses a text on a set of 2,216 rules [69]. Additionally, a compatible 
language model can be provided, which is based on the Google’s Books Ngram database [70]. The 
language model considers n-grams up to n=3. We integrated LanguageTool as a standalone HTTP 
server running in a Docker container. 

Figure 18 shows a simplified version of the language error detection process. An incoming user 
message is sent to the Rasa NLU service to extract entities. The message is subsequently passed to the 
LanguageTool service. Its response provides a list of detected errors. Among other things, an error 
contains data about the type, position in the text, suggestions and a user-friendly message to correct 
the mistake. This list is passed to a wrapper class, which extracts the relevant information and 
preprocesses it for the client. As stated in chapter 3.3, LanguageTool and other spellcheckers mark 
hesitation words (e.g. “uhm” and “ehm”) and names of individuals as false positives. Based on this 
consideration, we created methods in the wrapper class to ignore these errors. Hesitation words are 
filtered using a regular expression and a lookup table. Errors related to names of individuals are 
ignored by considering the list of entities from the NLU. The list of errors is returned to the client, 
which highlights the affected parts of the text accordingly. If the error-to-word ratio equals or exceeds 
25%, the chatbot will ask the user to rephrase their message. 
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Figure 18: A simplified depiction of the language error detection process. 

5.6 Data generation 
As mentioned in the previous chapters, the NLU and dialog manager use machine learning-based 
models for their classification tasks. A considerable amount of data is required to train such models.  

The NLU requires a data set of intents including entities. Depending on the variability of how an 
intent can be worded, a few to a several thousand are required [9, p. 8]. Unfortunately, the amount of 
data generated from the pilot runs does not suffice to train such models. For all 29 derived intents of 
the analysis phase (see chapter 3.2), a multitude of possible wordings were generated using a domain-
specific language (DSL) [71]. The figure below shows an excerpt of a DSL file that generates 
wordings for the intent ask_for_room_price. The generator replaces the placeholders and creates a 
randomized set of permutations. In the case below, the placeholder ~[can_we] is replaced by one of 
the words assigned to that placeholder.  

 
Figure 19: An excerpt of the DSL file generating wordings for the intent ask_for_room_price. 

Socket.IO Channel Rasa NLU LanguageTool

Event user_uttered
(message_id, message)

POST /parse
(message)

entities

POST /check?text=message
language errors

LTApiCheck
Response

LTApiCheckResponse(message, language errors)

ignore_hesistation_errors()

errors_to_dict()

ignore_entity_errors(entities, ["name"])

errors[]
Event bot_found_errors
(message_id, errors[])

check error_word_ratio()

Event bot_uttered
(message)

- What’s the price of room [alpha](room)? 
- Is there an even room for [1500 CHF](budget)? 
- Is there a room for [1200.-](budget)? 
- Can we book a room for [1500](budget)? 
- Is it possible to reserve a room for [1500](budget)? 
- Is there an inexpensive room? 
- Do you have a cheap event room? 
… 

%[ask_for_room_price] 
    ~[whats] the price of ~[specific_room]? 
    ~[is_there] ~[a_room] ~[for_singular] @[budget]? 
    ~[can_we] ~[rent] ~[a_room] ~[for_singular] @[budget]? 
    ~[is_there] ~[a_cheap] ~[room]? 
 
~[can_we] 
    Can we 
    Could we 
    Is it possible to 
    Do you have 
 
 
 

DSL file generates wordings 
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The NLU pipeline described in chapter 5.3 treats every word equally. It does not differentiate between 
stop words or keywords of a specific intent. If an intent is not trained on stop words that are used in 
different intents, incorrect predictions could occur due to a bias in the trained model. For example, the 
user message “Are there TVs in room Alpha?” might not match with the expected intent 
ask_for_room_equipment, even though the keyword TVs has been used, because the tokens “Are”, 
“there” and “in” were not part of its training set. Stop words cannot be ignored entirely however, as 
some intents rely on these words.  

The dialog manager is trained on so-called stories. A story, as seen in Figure 20, is composed of a 
sequence of intents including entities and actions that should be executed in response. They either 
represent an entire conversation or parts of a conversation that are tightly coupled. Enough stories 
must be provided for the chatbot to learn how to respond under certain circumstances. 

 
Figure 20: An example of a story showing intents (*) with mentioned entities ({key: value}) and actions (-) the 
bot takes. A complete list of intents, entities, actions and slots are provided in the appendix (see chapter 11). 

* greet 
    - utter_greet 
    - utter_ask_for_name 
* provide_name{"name": "Yin"} 
    - slot{"name": "Yin"} 
    - utter_ask_for_service_with_name 
* ask_for_room_size{"nr_of_people": "150"} 
    - slot{"nr_of_people": "150"} 
    - action_set_topic 
    - slot{"topic": "size"} 
    - utter_available_rooms_150_people 
* ask_for_room_price 
    - action_set_topic 
    - slot{"topic": "price"} 
    - utter_ask_for_room 
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6 Results 

This chapter presents the results of the implementation, by answering the research questions stated in 
the Problem statement. 

Does the chatbot understand the queries of ESL students and is it able to reply in a 
comprehensible manner? 

Overall, 70% of the user messages (n=146) were classified correctly in the usability tests. Test 2 and 3 
were conducted on the final models of the NLU and dialogue manager. 

 
Figure 21: Proportions of classified intents per usability test. 

Messages are labeled as unknown intent in Figure 21 when the user’s intent does not exist in our 
model. This occurs in instances where no training data is available or where three or more intents 
were mixed together in one message. After the first usability test, the model was augmented by 
introducing compound intents (greet+…) and ask_for_room_catering, to mitigate the classification of 
unknown intents. 
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The chatbot’s utterances (n=208) are correct in 75% of the cases, as shown in Figure 22. Incorrect 
utterances, meaning wrong or non-coherent answers account for 19%. Fallback messages triggered by 
confidence thresholds of NLU, dialog manger or language error detection account for 5.6%. 

 
Figure 22: Chatbot utterances labeled by correctness and origin of fallback messages. 

As an additional measure to separately test the performance of the NLU, a survey was conducted to 
collect wordings of intents for a test set. The survey was sent primarily to college students and 
commercial trainees completing their basic vocational training at commercial vocational schools. 
Students were asked to formulate intents in English. The questions and writing prompts were given in 
German, to mitigate the risk of influencing answers. A total of 4479 wordings were raised from the 
survey. The gathered data was not grammatically or otherwise corrected. Each wording was assigned 
to one intent. The featured entities in the wordings were not labelled. For the intents deny, farewell, 
disagree, affirm and ask_for_room_catering no wordings were explicitly collected. The scores of the 
test are depicted in Table 10. The micro averages the total of TPs, FNs and FPs. Both macro and 
weighted calculate the scores per intent and find their means. However, the weighted considers the 
number of wordings per intent as the weight. An excerpt of the confusion matrix from the test is 
portrayed in Figure 23. 

 Recall Precision F1 

Avg. Micro 0.68 0.68 0.68 

Avg. Macro 0.53 0.53 0.51 

Avg. Weighted 0.68 0.73 0.69 

Table 10: Scores from the intent classification on survey data. 

Confusing unrelated intents during a conversation are the most irritating issues. An uneven 
distribution of stop words (see chapter 5.6) and missing keywords in the training set are contributing 
factors. This is especially true for the intent ask_for_room_atmosphere. The participants of the survey 
used keywords such as “luxurious”, “atmospheric”, “swanky” and “pretentious”, to ask about a 
room’s atmosphere. Similarly, for the intent ask_for_room_highlight, the expression 

Classification of utterances from chatbot

 Fallback NLU

 Fallback dialog manager

 Fallback language error detection

 Utterance incorrect

 Utterance correct
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“salient/particular feature” was applied unexpectedly often. None of these words are part of the 
training set. Compared to the usability tests, the range of vocabulary was wider. This indicates that 
some participants might have used dictionaries (prohibited in the room reservation exercise) for 
completing the survey or have a higher English proficiency (see chapter 3.1).  

As mentioned before, unknown words cause issues for the NLU. This is also the case for similarly 
worded intents where the unknown word is the differentiating keyword. For example, the intent 
ask_for_room is often predicted where a more specific intent would be expected, as illustrated in the 
third column in Figure 23. Introducing these unknown words into the training set would lead to better 
predictions. 

When intents sharing the same underlying topic are confused by the NLU, the dialog manager can 
decrease the impact of the confusion. For example, if the NLU “wrongly” predicts 
provide_nr_of_people or provide_room instead of ask_for_room_size respectively ask_for_room, the 
chatbot will still be able to provide reasonable and related responses to the user. In the event of 
mistaking “I like room Alpha” (provide_preference) for reserve_room, the chatbot will eagerly ask if 
it should reserve the room. Therefore, misunderstandings of this type are not as consequential as 
others. 

 
Figure 23: Excerpt of confusion matrix of intent classification on survey data. 
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Is it possible to formulate a meaningful clarification request to trigger a rephrase from the 
student, in case of a misunderstanding? 

Rephrases are triggered when one of the confidence scores produced by the language error detection, 
NLU, or dialog manager falls below their threshold (see Figure 24). In this case, a message is picked 
from a list of fallback messages. 

The dialog manager is trained to ask for clarification, in case it does not know which room the user is 
referring to. In this case it will ask the user which room was meant by firing the action 
utter_ask_for_room (see chapter 11.5). 

A truly meaningful explanation of why a rephrase is necessary is not provided to the user. This would 
demand a more sophisticated NLG (see chapter 5.4), which the implementation does not include. 
However, the language error detection offers a potential source for meaningful explanations to the 
user. Erroneous parts of the user’s message are highlighted, and explanatory hints are displayed. We 
chose this option over generating responses to not impede the flow of the conversation. 

 
Figure 24: Source of fallback utterances by the chatbot. 

Is it possible to detect morphological, syntactical and semantical errors in the student’s 
language? 

As pointed out in the analysis (chapter 3.3), ESL students commit predominantly morphological 
errors. For this reason, the focus here lies on spelling errors. LanguageTool (F0.5=0.95) proves to be an 
adequate tool for our needs, as demonstrated in the spellchecker evaluation (see chapter 4.2). 

The detection of syntactical and semantical errors is still a difficult task for computers, as we pointed 
out in our research chapter 2.3. LanguageTool contains grammar rules such as “Sentence is a 
fragment”, which can detect syntactical errors [69]. The introduction of the n-gram language model, 
allows us to find semantical errors such as homonyms and heteronyms. However, no measures are 
provided to quantitatively prove its effectiveness regarding syntactical and semantical errors. No 
added value would have resulted from it because these types of errors were comparatively 
insignificant (see chapter 3.3). 

Do software development kits (SDKs), cloud solutions or software libraries exist to create a 
holistic solution in which the aforementioned language errors can be detected? 

As our implementation demonstrates, it is possible to create a holistic solution where language errors 
can be detected. However, we have not found a sufficiently performing solution to identify syntactical 
or semantical errors in English texts. 
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7 Conclusions 

In this final chapter, we conclude this thesis with a summary of the results, lessons learned and 
suggestions for improvement for future releases. 

As demonstrated in the results, it is possible to build an adequately performing domain-specific 
machine learning-based chatbot for ESL classrooms. In our tests with the target audience, our 
prototype understood 70% of the exchanges and was able to generate matching responses. In case of a 
misunderstanding, due to language errors or an unclear intent, negotiations of meaning are promoted, 
by requesting the user to rephrase. Shortcomings in the users’ language are highlighted, allowing 
them to learn from their mistakes and improve their English. The added value of introducing such a 
chatbot into ESL classrooms will be evaluated in Johanna Oeschger’s thesis [1]. 

More meaningful responses in case of misunderstandings could be provided to the user by integrating 
the language error detection as an integral step in the NLU pipeline. By feeding the errors to the 
dialog manager, a model could be trained to respond based on the number and type of errors in the 
current context. 

Testing the NLU with the data set collected from the survey revealed some deficiencies in its model. 
We are certain that the performance of the NLU could be improved by integrating parts of that data 
into the model. Keeping some of the language errors that exist in the data could increase the 
confidence of the intent classification. This would not impair the negotiations of meaning if the 
language error detection influences the dialog manager as described in the previous paragraph. 

Unfortunately, no preexisting domain-specific corpus or models existed for our endeavor. The time it 
took to generate the necessary data for our machine learning models was greatly underestimated. We 
believe that conducting the survey after the initial analysis would have been beneficial in many ways. 
Firstly, instead of spending much time to invent possible wordings for intents, they could have been 
deduced from the survey responses. Secondly, the training and test sets would have been more 
diverse, possibly leading to more reliable test results during implementation. Lastly, the NLU might 
have performed better much earlier thanks to higher diversity. It is important to note however, that 
solely relying on collected data for the models has its downsides too. Instead of generating data, time 
would have been reallocated to cleansing it. 
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11 Appendix 

11.1 Room reservation exercise 
The original room reservation exercise students are given prior to chatting with the bot. It is written in 
German. 

Sie sind KV-Lernende/r in einem Betrieb. Ihre Kolleginnen und Kollegen aus der Marketing-
Abteilung organisieren nächsten Monat einen Networking-Event in Toronto (Kanada). Sie 
haben nun den Auftrag, im «One King» Hotel in Toronto einen passenden Raum für den Event 
zu finden.  

Der Raum soll: 

- Platz haben für mind. 150 Personen 
- eine Präsentation (Video, Audio) ermöglichen 
- Gespräche in kleineren Gruppen ermöglichen 
- eine stimmungsvolle Atmosphäre haben 
- den Gästen Eindruck machen, aber nicht zu protzig/übertrieben wirken 
- max. 1’500 Franken kosten 

Das Hotel «One King» hat drei Eventräume: A, B und C. Kontaktieren Sie das Hotel über ihren 
Online-Chat und stellen Sie Fragen zu den drei Räumen. Entscheiden Sie, welcher Raum am 
besten passt.  

Notieren Sie mindestens fünf Argumente (in Stichworten), um das Marketing-Team zu 
überzeugen, dass Sie den besten Raum gefunden haben. 

11.2 Complete list intents 

ID Intent Examples 

1 affirm Yes | Yes, please | That is correct 

2 ask_for_directions What is the fastest way to your hotel? 

3 ask_for_options What rooms do you have? | Do you have meeting rooms? 

4 ask_for_room Tell me about room Alpha | What about the others?  

5 ask_for_room_atmosphere Are all the rooms nice? | How is the atmosphere in room 
Alpha? 

6 ask_for_room_equipment Is it possible to show a presentation in Alpha? 

7 ask_for_room_highlight Are there any special things in the room? 

8 ask_for_room_lighting How is the lighting in the room? 

9 ask_for_room_price How much does room Beta cost? | Are the other rooms 
expensive? 

10 ask_for_room_seating Are we able to form groups for a workshop? 

11 ask_for_room_size Are the other ones bigger? | Does room Alpha have space 
for 150? 
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12 ask_for_room_catering Do you provide lunch? | Are there refreshments in Room 
Gamma? 

13 deny No | Nope | No thank you | Maybe not 

14 disagree Not great | That doesn’t sound good | I don’t like it 

15 farewell Take care! | Bye | Have a nice day 

16 greet Hi there! | Hey, how are you? | Hello 

17 greet+ask_for_options Hello. What rooms do you have? 

18 greet+ask_for_room_equipment Hello there, do you have rooms that have audio systems? 

19 greet+ask_for_room_price Hello there how is it going? How much are the rooms? 

20 greet+ask_for_room_size Hello, how are you? Do you provide rooms for up to 200? 

21 greet+provide_name Hi, my name is Fred Pierson | Hi, I am Lynn can you help 
me? 

22 provide_booking_date Please book the room on the 25th of October | 24.12.19 

23 provide_budget I have a budget of CHF 1’500 | I have 1500.- available | 
1’500.- 

24 provide_name My name is Ellis | Landon Donovan | Michael 

25 provide_nr_of_people We are expecting 200 people | 150 people | 150 

26 provide_preference I really like room Alpha | Room Beta sounds fantastic 

27 provide_room Room Alpha | I am talking about room Beta | Alpha!  

28 reserve_room I want to reserve room Alpha | I want to book this room 

29 thanks Thank you | Thanks! | Thanks a lot 

11.3 Complete list of entities 

ID Entity Examples 

1 budget 1’500.- | 1200 | CHF 1500 | 1600 | $1200 

2 company ABC Inc. | Lindt AG  

3 current_room Alpha | Beta | Gamma 

4 date 25.04.2019 | 24th of May | 1st December 2019  

5 name Yves | Max Muster | Mr. Muster 

6 nr_of_people 150 

7 room Alpha | Beta | Gamma 

8 start_location Train station | Airport 

9 time 24:00 | 3pm 
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11.4 Complete list of slots 

ID Slot Examples One-hot encoding 

1 budget <empty>  0 0 0 0 
  x < = 900 1 0 0 0 
  900 < x <= 1100 0 1 0 0 
  1100 < x <= 1400 0 0 1 0 
  1400 < x 0 0 0 1 
2 company <empty> 0 
  <not empty> 1 
3 current_room <empty>  0 0 0 
  Alpha 1 0 0 
  Beta 0 1 0 
  Gamma 0 0 1 
4 date <empty> 0 
  <not empty> 1 
5 name <empty> 0 
  <not empty> 1 
6 nr_of_people <empty>  0 0 0 0 
  x < = 190 1 0 0 0 
  190 < x <= 200 0 1 0 0 
  200 < x <= 270 0 0 1 0 
  270 < x 0 0 0 1 
7 room <empty>  0 0 0 0 0 0 
  Alpha, first 1 0 0 0 0 0 
  Beta, second 0 1 0 0 0 0 
  Gamma, third, last 0 0 1 0 0 0 
  other, others, another 0 0 0 1 0 0 
  this, that, it, there 0 0 0 0 1 0 
  all, every, each 0 0 0 0 0 1 
8 start_location <empty> 0 
  <not empty> 1 
9 time <empty> 0 
  <not empty> 1 
10 topic <empty>  0 0 0 0 0 0 0 
  atmosphere 1 0 0 0 0 0 0 
  lighting 0 1 0 0 0 0 0 
  equipment 0 0 1 0 0 0 0 
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  highlight 0 0 0 1 0 0 0 
  price 0 0 0 0 1 0 0 
  seating 0 0 0 0 0 1 0 
  size 0 0 0 0 0 0 1 

11.5 Complete list of actions 

ID Action Description / Example 

1 action_correct_room Fills the slot current_room given the entity room 
2 action_default_fallback Triggered if below threshold (provided by Rasa) 
3 action_get_room_price Not actively used 
4 action_get_room_size Not actively used 
5 action_listen Waits for user input (provided by Rasa) 
6 action_restart Restarts the dialog (provided by Rasa) 
7 action_set_topic Fills the topic slot if certain intents are triggered 
8 utter_appreciation You are welcome. 
9 utter_ask_book_room Sure. Would you like to book it? 
10 utter_ask_for_additional_service Could I help you with anything else? 
11 utter_ask_for_alternative Would you like to see another option? 
12 utter_ask_for_booking_confirmation Thank you. So, I will book {current_room} … 
13 utter_ask_for_booking_date What would be the date for the booking? 
14 utter_ask_for_budget Could you please tell me what the budget …? 
15 utter_ask_for_confirmation Could you please confirm if this is correct? 
16 utter_ask_for_name Please could you give me your name? 
17 utter_ask_for_nr_of_people How many guests are you expecting? 
18 utter_ask_for_room Please could you give me the name of the room? 
19 utter_ask_for_service How can I help you? 
20 utter_ask_for_service_with_name How can I help you, {name}? 
21 utter_ask_to_narrow_options Are you looking for a specific room? 
22 utter_ask_what_info What information can I help you with? 
23 utter_available_rooms_150_people We have three event rooms on offer for … 
24 utter_available_rooms_200_people We have two event rooms on offer … 
25 utter_available_rooms_270_people There is one room available for {nr_of_people}… 
26 utter_budget_limitation_1100 We can offer you two rooms for this price. 
27 utter_budget_limitation_1400 All our rooms are below {budget}. 
28 utter_budget_limitation_900 There is one room on offer that is below {budget}. 
29 utter_catering_options I am afraid we do not offer a catering option. 
30 utter_confirm Yes, sure. 



   Appendix 

  42 

31 utter_confirm_booking Room {current_room} has just been reserved … 
32 utter_confirm_preference_positive Great choice. I think this room will … 
33 utter_default Excuse me, could you rephrase this please? 
34 utter_directions_with_start_location You can easily reach us by subway from the … 
35 utter_directions_without_start_location I recommend that you travel by subway. 
36 utter_dissatisfaction I am sorry to hear that. 
37 utter_enough_budget All of our rooms are below your price limit. 
38 utter_generic_atmosphere_options Each room has its own unique ambience. 
39 utter_generic_equipment_options All of the three rooms are equipped for present … 
40 utter_generic_highlight_options One room is a spacious auditorium with all … 
41 utter_generic_lighting_options The lighting in all three rooms may be adjusted … 
42 utter_generic_pricing_options We offer competitive pricing for all our rooms… 
43 utter_generic_seating_options We have rooms for various occasions. 
44 utter_goodbye Thank you very much. Goodbye, {name}. 
45 utter_greet Welcome to One King Hotel. I am happy to … 
46 utter_greet_with_name Welcome at One King Hotel, {name}. 
47 utter_options We have multiple offerings. 
48 utter_room_alpha_atmosphere Room Alpha is an auditorium with a stage and … 
49 utter_room_alpha_equipment Room Alpha is equipped with a big screen … 
50 utter_room_alpha_equipment_stage It has a magnificent stage including … 
51 utter_room_alpha_highlight Room Alpha offers plenty of space for … 
52 utter_room_alpha_lighting Room Alpha has no natural light as … 
53 utter_room_alpha_people_limit Room Alpha provides space for up to 270 people. 
54 utter_room_alpha_price The price for room Alpha is CHF 1400. 
55 utter_room_alpha_seating Alpha has fixed seating and no tables. It is an … 
56 utter_room_beta_atmosphere The outdoor section in room Beta offers a great … 
57 utter_room_beta_equipment Room Beta has a portable screen, a projector … 
58 utter_room_beta_equipment_stage It does not have a stage. There is however … 
59 utter_room_beta_highlight Room Beta is located on the 15th floor. … 
60 utter_room_beta_lighting Room Beta has a lot of natural light from … 
61 utter_room_beta_people_limit Room Beta offers 130 seats indoors and 60 seats… 
62 utter_room_beta_price Beta is CHF 900 including the terrace. 
63 utter_room_beta_seating The indoor seating area in room Beta has tables … 
64 utter_room_gamma_atmosphere Gamma is on the first floor. Its original decora… 
65 utter_room_gamma_equipment Gamma has two large screens and loudspeakers 
66 utter_room_gamma_equipment_stage It does not have a stage. It does however offer … 
67 utter_room_gamma_highlight Room Gamma is on the first floor. It is a … 
68 utter_room_gamma_lighting Room Gamma is well-lit with lighting … 
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69 utter_room_gamma_people_limit Room Gamma offers space for up to 200 people… 
70 utter_room_gamma_price The price is CHF 1100 CHF for room Gamma. 
71 utter_room_gamma_seating There are moveable tables for 6-8 guests … 
72 utter_satisfied I am pleased to hear that you like it. 
73 utter_thanks Thank you very much for choosing One King … 
74 utter_thanks_with_name Thank you, {name}! 
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